TOPBP1
   HOME

TheInfoList



OR:

DNA topoisomerase 2-binding protein 1 (TOPBP1) is a
scaffold protein In biology, scaffold proteins are crucial regulators of many key signalling pathways. Although scaffolds are not strictly defined in function, they are known to interact and/or bind with multiple members of a signalling pathway, tethering them in ...
that in humans is encoded by the ''TOPBP1''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
. TOPBP1 was first identified as a protein binding partner of DNA topoisomerase-IIβ by a yeast 2-hybrid screen, giving it its name. TOPBP1 is involved in a variety of nuclear specific events. These include DNA damage repair,
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
,
transcriptional regulation In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from alt ...
, and cell cycle checkpoint activation. TOPBP1 primarily regulates the DNA damage repair response through its ability to activate the damage response kinase, ataxia-telangiectasia mutated and RAD3-related (ATR). It also plays a critical role in DNA replication initiation and regulation of the cell cycle. Changes in TOPBP1 gene expression are associated with pulmonary hypertension,
breast cancer Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or a re ...
,
glioblastoma Glioblastoma, previously known as glioblastoma multiforme (GBM), is one of the most aggressive types of cancer that begin within the brain. Initially, signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality ch ...
,
non-small cell lung cancer Non-small-cell lung cancer (NSCLC) is any type of epithelial lung cancer other than small-cell lung carcinoma (SCLC). NSCLC accounts for about 85% of all lung cancers. As a class, NSCLCs are relatively insensitive to chemotherapy, compared to sm ...
, and
sarcomas A sarcoma is a malignant tumor, a type of cancer that arises from transformed cells of mesenchymal (connective tissue) origin. Connective tissue is a broad term that includes bone, cartilage, fat, vascular, or hematopoietic tissues, and sarcoma ...
.


Structure


BRCT domains

The TOPBP1 gene encodes a
scaffold protein In biology, scaffold proteins are crucial regulators of many key signalling pathways. Although scaffolds are not strictly defined in function, they are known to interact and/or bind with multiple members of a signalling pathway, tethering them in ...
which facilitates interactions between different proteins at specific times and locations. It accomplishes these interactions with other protein partners through its breast cancer associated gene 1 C-terminus (
BRCT Bangladesh Rehabilitation Centre for Trauma Victims (BRCT; bn, বিআরসিটি) is a Bangladeshi NGO, working in the area of rehabilitation of trauma victims. It was established in 1992. BRCT began its journey by providing medical trea ...
) domains. A BRCT domain is structurally defined by a 4 member
β sheet The beta sheet, (β-sheet) (also β-pleated sheet) is a common motif of the regular protein secondary structure. Beta sheets consist of beta strands (β-strands) connected laterally by at least two or three backbone hydrogen bonds, forming a g ...
that is bookended by one
α-helix The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues e ...
(α2) and two other α-helices (α1 and α3). The amino acid residues that make up these core features are highly conserved, with protein specific deviations occurring in the loops that connect these subunits. BRCT domains canonically act in pairs, with one domain acting as the acceptor for phosphorylated binding partners and the other domain possessing a binding motif that provides specificity. These pairs are separated by a linker sequence that varies by protein. The paired domains associate through hydrophobic packing interactions that occur between the
N-terminal The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
BRCT domain's α2 helix and the
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
BRCT domain's α1 and α3 helices. These interactions facilitate BRCT domain binding with phosphorylated binding partners. In contrast, BRCT domains can also exist as either single domains or as a fusion of two different domains. Human TOPBP1 has nine unique BRCT domains, with four conserved from the budding yeast homologue Dpb11 (i.e. BRCT1,2 and BRCT4,5). In human TOPBP1 the BRCT0, BRCT1, and BRCT2 domains uniquely exist in triple domain form, which is in contrast to the yeast Dpb11 canonical double domain. Only the BRCT3 and BRCT6 domains exist as single domains and may not be able to bind phosphoprotein partners TOPBP1 also contains an ATR activation domain (AAD) that is located between the BRCT6 and BRCT7 domains. Through these BRCT specific interactions TOPBP1 mediates DNA damage repair, DNA replication, transcription, and mitosis. To regulate its activity, TOPBP1 has been found to self-oligomerize at the BRCT7/8 domains, as it responds to replicative stress.


Function


DNA damage repair

TOPBP1 was first identified as a
DNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA da ...
protein through its association with
BRCA1 Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a h ...
, which is a protein heavily implicated in breast cancer pathology. TOPBP1 was found in complex with BRCA1 at sites independent from replication forks (i.e identified by the DNA replication clamp
proliferating cell nuclear antigen Proliferating cell nuclear antigen (PCNA) is a DNA clamp that acts as a processivity factor for DNA polymerase δ in eukaryotic cells and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, whe ...
) during normal
S phase S phase (Synthesis Phase) is the phase of the cell cycle in which DNA is replicated, occurring between G1 phase and G2 phase. Since accurate duplication of the genome is critical to successful cell division, the processes that occur during ...
. When DNA damage was induced at higher levels by γ irradiation, there was an increase in TOPBP1/BRCA1 at sites away from replication forks. In contrast, when replication forks were stalled by hydroxyurea to generate DNA replication stress, TOPBP1/BRCA1 were found at sites of replication forks. This showed a DNA damage specific role for TOPBP1 recruitment at both replication sites and non-replication sites. To mediate these aspects of DNA repair, TOPBP1 was found to associate with Rad9, which forms a complex with Rad1 and
Hus1 Checkpoint protein HUS1 is a protein that in humans is encoded by the ''HUS1'' gene. Function The protein encoded by this gene is a component of an evolutionarily conserved, genotoxin-activated checkpoint complex that is involved in the cell cy ...
, hereby termed the 9-1-1 DNA repair clamp. TOPBP1 binds to Rad9 with its BRCT0/1/2 domains. The BRCT1 domain was found to be directly responsible for mediating the phosphorylation dependent interaction with Rad9. DNA damage repair is initiated and maintained by two kinases, ataxia-telangiectasia mutated (ATM) and
ATR ATR may refer to: Medicine * Acute transfusion reaction * Ataxia telangiectasia and Rad3 related, a protein involved in DNA damage repair Science and mathematics * Advanced Test Reactor, nuclear research reactor at the Idaho National Laboratory, ...
, with ATR proving to be more important for maintaining the genome. TOPBP1 has been shown to be an activator of ATR, leading to an increase in the kinase activity of ATR. Following instances of DNA damage that lead to double stranded breaks (DSBs) and subsequent repair mediated resection, there will be long sequences of single stranded DNA (ssDNA) exposed. This ssDNA will become coated with replication protein A (RPA). ATR is successfully honed to RPA coated ssDNA by ATR interacting protein (ATRIP). The junction of RPA coated ssDNA and intact double stranded DNA (dsDNA) is where TOPBP1 and the 9-1-1 clamp is recruited. In addition to TOPBP1, ATR has also been found to be activated by the ssDNA specific, RPA interacting protein ETAA1. TOPBP1/9-1-1 recruitment is conducted independent of ATRIP/ATR which serves as a regulatory mechanism that prevents both premature and non-specific activation of the DNA damage response pathway. TOPBP1 interacts with ATR through its ATR activating domain (AAD), which is located between the BRCT domains 6 and 7. The AAD domain of TOPBP1 alone is sufficient for activating ATR kinase activity in vitro. Knockdowns of TOPBP1 gene expression leads to a reduction in phosphorylation of downstream ATR kinase targets. The specific activation mechanism of ATR is still unknown, but it is thought that TOPBP1 binding to ATR induces a conformational change that promotes catalysis above baseline kinase activity. Following ATR activation, it is able to phosphorylate downstream DNA damage associated factors, with the primary effector being the kinase Chk1. Recombinant TOPBP1 protein is sufficient for ATR activation, signifying that regulation of TOPBP1 activity is not through
post-translational modifications Post-translational modification (PTM) is the covalent and generally enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by ribosomes ...
. Thus, it is thought to be regulated by either sub-cellular localization (i.e. movement to the nucleus for activation) and/or protein concentration. This is further supported by the fact that TOPBP1 reduces the Km of ATR for its various substrates. In addition, TOPBP1 can be phosphorylated by ATM, which increases the efficiency of TOPBP1 mediated activation of ATR.


DNA replication

Human TOPBP1 is required for the initiation of
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
through its association with the proteins Treslin, CDC45, and RecQ4. In yeast, the TOPBP1 homologue Dpb11 has been shown to recruit DNA polymerase ε (Polε) and the GINs complex to the
origin of replication The origin of replication (also called the replication origin) is a particular sequence in a genome at which replication is initiated. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semi ...
which has been pre-loaded with the minichromosome maintenance ( MCM) complex. It accomplishes this by binding to Sld2 (Polε associated factor) and Sld3 (CDC45 associated factor) in a cyclin dependent kinase (CDK) phosphorylation dependent manner. This leads to the formation of the pre-initiation complex, i.e. the CDC45–MCM–GINS (CMG) replicative helicase. In summary, TOPBP1 acts as a scaffolding protein that facilitates the interactions necessary to form the DNA replication pre-initiation complex. In humans the mechanism is not fully understood yet, but TOPBP1 interacts with RecQ4 (Sld2) and Treslin (Sld3). TOPBP1 has also been shown to interact with another DNA helicase, DNA helicase B (HELB), which is part of the 1B helicase superfamily and is involved in both DNA replication and repair. This interaction between TOPBP1 and HELB has also been implicated in CDC45 mediated initiation of DNA replication.


Transcriptional regulation

TOPBP1 regulates gene transcription through its direct interactions with transcription factors, e.g. E2F-1 and Miz1. The E2F family of transcription factors mediate the expression of a multitude of genes involved in a variety of functions. These include cell proliferation, development, DNA damage response, and apoptosis. It is heavily implicated in the DNA replication pathway through its regulation of genes in the retinoblastoma (Rb) tumor suppressor pathway. One such example is E2F-1, which mediates the transition from G1 to S phase. When DNA damage is detected, TOPBP1 will bind to E2F-1 through its BRCT6 domain. This will inhibit the ability of E2F-1 to both induce transcription mediated apoptosis and the transition to S phase. The induction of a repressive transcriptional state in apoptotic related genes is thought to be from the TOPBP1 mediated recruitment of chromatin remodeling machines, e.g.
histone deacetylases Histone deacetylases (, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on a histone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around his ...
(HDAC). TOPBP1 binding to E2F-1 is dependent on both
Akt Protein kinase B (PKB), also known as Akt, is the collective name of a set of three serine/threonine-specific protein kinases that play key roles in multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, tran ...
mediated phosphorylation of Ser1159 on TOPBP1 and TOPBP1 oligomerization at its 7 and 8 BRCT domains.


Cell cycle

Replication stress occurs when the replication fork stalls and is unable to progress. This phenomenon may be caused by oncogenic induced activation, difficult to replicate structures, transcription/replication collisions, polymerase uncoupling,
dNTP A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are ...
starvation, and other sources. In these instances, cells will progress to mitosis before replication is complete. In an attempt to finish the lingering DNA replication, the cell will initiate mitotic DNA synthesis (MiDAS). TOPBP1 is responsible for recruiting the MiDAS essential scaffolding protein
SLX4 SLX4 (also known as BTBD12 and FANCP) is a protein involved in DNA repair, where it has important roles in the final steps of homologous recombination. Mutations in the gene are associated with the disease Fanconi anemia. The version of SLX4 pres ...
, which forms a large
nuclease A nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously effect single and double stranded breaks in their ta ...
complex. The proposed mechanisms for TOPBP1/SLX4 mediated MiDAS are either replication fork restart and/or the resolution of
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
intermediates that were responsible for finishing replication. As
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
progresses, the amount of DNA associated TOPBP1 decreases, indicative of repaired DNA. During
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
, sister
chromatids A chromatid (Greek ''khrōmat-'' 'color' + ''-id'') is one half of a duplicated chromosome. Before replication, one chromosome is composed of one DNA molecule. In replication, the DNA molecule is copied, and the two molecules are known as chro ...
can become entangled and are unable to be separated as normal
anaphase Anaphase () is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maxim ...
commences. These entangled structures are referred to as chromatin bridges and if left unresolved, they can lead to
aneuploidy Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with any ...
. A specific subset of these entangled chromatids are ultrafine anaphase bridges (UFBs). They are characterized by a lack of histones and an inability to be detected by conventional DNA staining methods. There is evidence that topoisomerase II-α (TOP2A) is capable of resolving UFBs at the
centromere The centromere links a pair of sister chromatids together during cell division. This constricted region of chromosome connects the sister chromatids, creating a short arm (p) and a long arm (q) on the chromatids. During mitosis, spindle fibers a ...
, as depletion of TOP2A leads to more UFBs following mitosis. These centromeric UFBs are normally found during mitosis but will decrease as the cell cycle progresses normally. This suggests that UFBs are a normal outcome of mitosis and that TOP2A may play a role in resolving them before the cell exits the cell cycle thereby preventing adverse outcomes TOPBP1 was found to localize to both UFBs and co-localize with TOP2A, which is a conserved interaction found in the yeast homologue Dpb11. As TOPBP1 is a known scaffolding protein, it appears to be recruiting TOP2A to the UFBs for their eventual resolution. TOPBP1 binding to UFBs was found to act through the highly conserved lysine 704 residue in the BRCT5 domain. However it is still not known exactly how TOPBP1 then recruits TOP2A to the UFBs. It has been shown that the BRCT7/8 domains of TOPBP1 interact with TOP2A, but these domains are not found in the yeast homologue Dpb11, so it is hypothesized that the linker region found between BRCT7 and BRCT8 may be responsible for TOP2A recruitment.


Clinical signficance


Cancer

Changes in TOPBP1 gene expression are associated with
breast cancer Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or a re ...
,
glioblastoma Glioblastoma, previously known as glioblastoma multiforme (GBM), is one of the most aggressive types of cancer that begin within the brain. Initially, signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality ch ...
,
non-small cell lung cancer Non-small-cell lung cancer (NSCLC) is any type of epithelial lung cancer other than small-cell lung carcinoma (SCLC). NSCLC accounts for about 85% of all lung cancers. As a class, NSCLCs are relatively insensitive to chemotherapy, compared to sm ...
, and
sarcomas A sarcoma is a malignant tumor, a type of cancer that arises from transformed cells of mesenchymal (connective tissue) origin. Connective tissue is a broad term that includes bone, cartilage, fat, vascular, or hematopoietic tissues, and sarcoma ...
. In one study, increased TOPBP1 protein levels were found in 46 of 79 (58.2%) of primary breast cancer samples assessed, with this increase in expression associated with a decrease in patient survival (40 vs. 165 months; p = 0.003) and an increase in the histological grade of the cancer (66.7% vs. 35.5% grade; p = 0.007). In healthy breast tissue, TOPBP1 protein expression was only detectable in 2 of 47 (4.26%) samples collected. In contrast to this finding, another study found a decrease in the gene expression of TOPBP1 by RT-PCR in 127 breast cancer patients. Although the TOPBP1 protein expression was unchanged in this cohort. In addition, this study found that TOPBP1 was aberrantly expressed in the cytoplasm in this cohort of familial breast cancer patients. The levels of cytoplasmic TOPBP1 was positively correlated with the histological grade of the tumor. TOPBP1 overexpression is associated with advanced stage sarcomas, lung metastasis, and chemoresistance to platinum agents (e.g.
cisplatin Cisplatin is a chemotherapy medication used to treat a number of cancers. These include testicular cancer, ovarian cancer, cervical cancer, breast cancer, bladder cancer, head and neck cancer, esophageal cancer, lung cancer, mesothelioma, br ...
). A heterozygous polymorphism in TOPBP1 (Arg309Cys mutation between BRCT2 and BRCT3) was found in a cohort of 125 Finnish breast and/or ovarian cancer bearing families (15.2% had the mutation, 7% of controls had the mutation). Although a larger cohort study of German breast cancer patients did not find an association between this polymorphism and risk of breast cancer.


Pulmonary hypertension

Utilizing publicly available datasets of whole-exome sequencing, a link was found between TOPBP1 mutations and pulmonary hypertension (PAH). Three PAH specific TOPBP1 mutant alleles were identified: p.S817L, p.N1042S, and p.R309C. While the p.R309C allele was predicted to be potentially disease causing, all three disease associated alleles still had high frequencies in the control population, so TOPBP1 mutations would not likely be the only cause of PAH. In follow up studies, knockdown of TOPBP1 by
siRNA Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA at first non-coding RNA molecules, typically 20-24 (normally 21) base pairs in length, similar to miRNA, and operating wi ...
led to an increase in detectable DNA damage and apoptosis in healthy pulmonary endothelial cells. A rescue with TOPBP1 bearing
plasmids A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
led to a recovery in endothelial cell health. This implicates DNA damage in the pathology of PAH.


See also

* DNA damage repair * Ataxia-telangiectasia mutated and RAD3-related (ATR) *
BRCA1 Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a h ...
*
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
* Chromatin bridges * Topoisomerase II-α (TOP2A)


References


Further reading

* * * * * * * * * * * * * * * * * {{Refend