In _{0}(''a'', ''b'') = 1 + ''b''. In this context, the extension of zeration is

mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...

, the successor function or successor operation sends a natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called ''cardinal n ...

to the next one. The successor function is denoted by ''S'', so ''S''(''n'') = ''n'' +1. For example, ''S''(1) = 2 and ''S''(2) = 3. The successor function is one of the basic components used to build a primitive recursive function.
Successor operations are also known as zeration in the context of a zeroth hyperoperation
In mathematics, the hyperoperation sequence is an infinite sequence of arithmetic operations (called ''hyperoperations'' in this context) that starts with a unary operation (the successor function with ''n'' = 0). The sequence continues with th ...

: Haddition
Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or '' sum'' of ...

, which is defined as repeated succession.
Overview

The successor function is part of theformal language
In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules.
The alphabet of a formal language consists of sym ...

used to state the Peano axioms
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearl ...

, which formalise the structure of the natural numbers. In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition is defined. For example, 1 is defined to be ''S''(0), and addition on natural numbers is defined recursively by:
:
This can be used to compute the addition of any two natural numbers. For example, 5 + 2 = 5 + ''S''(1) = ''S''(5 + 1) = ''S''(5 + ''S''(0)) = ''S''(''S''(5 + 0)) = ''S''(''S''(5)) = ''S''(6) = 7.
Several constructions of the natural numbers within set theory have been proposed. For example, John von Neumann
John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest cove ...

constructs the number 0 as the empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in othe ...

, and the successor of ''n'', ''S''(''n''), as the set ''n'' ∪ . The axiom of infinity then guarantees the existence of a set that contains 0 and is closed with respect to ''S''. The smallest such set is denoted by N, and its members are called natural numbers.Halmos, Chapter 11
The successor function is the level-0 foundation of the infinite Grzegorczyk hierarchy
The Grzegorczyk hierarchy (, ), named after the Polish logician Andrzej Grzegorczyk, is a hierarchy of functions used in computability theory. Every function in the Grzegorczyk hierarchy is a primitive recursive function, and every primitive rec ...

of hyperoperation
In mathematics, the hyperoperation sequence is an infinite sequence of arithmetic operations (called ''hyperoperations'' in this context) that starts with a unary operation (the successor function with ''n'' = 0). The sequence continues with th ...

s, used to build addition
Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or '' sum'' of ...

, multiplication
Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addi ...

, exponentiation
Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to r ...

, tetration
In mathematics, tetration (or hyper-4) is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though \uparrow \uparrow and the left-exponent ''xb'' are common.
Under the definition as re ...

, etc. It was studied in 1986 in an investigation involving generalization of the pattern for hyperoperations.
It is also one of the primitive functions used in the characterization of computability by recursive functions.
See also

*Successor ordinal In set theory, the successor of an ordinal number ''α'' is the smallest ordinal number greater than ''α''. An ordinal number that is a successor is called a successor ordinal. Properties
Every ordinal other than 0 is either a successor ordin ...

* Successor cardinal
*Increment and decrement operators
Increment and decrement operators are unary operators that ''add'' or ''subtract'' one, to or from their operand, respectively.
They are commonly implemented in imperative programming languages. C-like languages feature two versions (pre- and ...

*Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is call ...

References

* Mathematical logic Arithmetic Logic in computer science {{mathlogic-stub