Successor Cardinal
In set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case they diverge because every infinite ordinal and its successor have the same cardinality (a bijection can be set up between the two by simply sending the last element of the successor to 0, 0 to 1, etc., and fixing ω and all the elements above; in the style of Hilbert's Hotel Infinity). Using the von Neumann cardinal assignment and the axiom of choice (AC), this successor operation is easy to define: for a cardinal number ''κ'' we have :\kappa^+ = \left, \inf \\ , where ON is the class of ordinals. That is, the successor cardinal is the cardinality of the least ordinal into which a set of the given cardinality can be mapped one-to-one, but which cannot be mapped one-to-one back into that set. That the set above is nonempty follows from ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limit Ordinal
In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ordinal γ such that β 0, are limits of limits, etc. Properties The classes of successor ordinals and limit ordinals (of various cofinalities) as well as zero exhaust the entire class of ordinals, so these cases are often used in proofs by transfinite induction or definitions by transfinite recursion. Limit ordinals represent a sort of "turning point" in such procedures, in which one must use limiting operations such as taking the union over all preceding ordinals. In principle, one could do anything at limit ordinals, but taking the union is continuous in the order topology and this is usually desirable. If we use the von Neumann cardinal assignment, every infinite cardinal number In mathematics, a cardinal number, or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kenneth Kunen
Herbert Kenneth Kunen (August 2, 1943August 14, 2020) was a professor of mathematics at the University of Wisconsin–Madison who worked in set theory and its applications to various areas of mathematics, such as set-theoretic topology and measure theory. He also worked on non-associative algebraic systems, such as loops, and used computer software, such as the Otter theorem prover, to derive theorems in these areas. Personal life Kunen was born in New York City New York, often called New York City (NYC), is the most populous city in the United States, located at the southern tip of New York State on one of the world's largest natural harbors. The city comprises five boroughs, each coextensive w ... in 1943 and died in 2020. He lived in Madison, Wisconsin, with his wife Anne, with whom he had two sons, Isaac and Adam. Education Kunen completed his undergraduate degree at the California Institute of Technology and received his Ph.D. in 1968 from Stanford ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thomas Jech
Thomas J. Jech (, ; born 29 January 1944 in Prague) is a mathematician specializing in set theory who was at Penn State for more than 25 years. Life He was educated at Charles University (his advisor was Petr Vopěnka) and from 2000 is at thInstitute of Mathematicsof the Academy of Sciences of the Czech Republic. Work Jech's research also includes mathematical logic, algebra, analysis, topology, and measure theory. Jech gave the first published proof of the consistency of the existence of a Suslin line. With Karel Prikry, he introduced the notion of precipitous ideal. He gave several models where the axiom of choice failed, for example one with ω1 measurable. The concept of a Jech–Kunen tree is named after him and Kenneth Kunen Herbert Kenneth Kunen (August 2, 1943August 14, 2020) was a professor of mathematics at the University of Wisconsin–Madison who worked in set theory and its applications to various areas of mathematics, such as set-theoretic topology a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paul Halmos
Paul Richard Halmos (; 3 March 1916 – 2 October 2006) was a Kingdom of Hungary, Hungarian-born United States, American mathematician and probabilist who made fundamental advances in the areas of mathematical logic, probability theory, operator theory, ergodic theory, and functional analysis (in particular, Hilbert spaces). He was also recognized as a great mathematical expositor. He has been described as one of The Martians (scientists), The Martians. Early life and education Born in the Kingdom of Hungary into a History of the Jews in Hungary, Jewish family, Halmos immigrated to the United States at age 13. He obtained his B.A. from the University of Illinois at Urbana-Champaign, University of Illinois, majoring in mathematics while also fulfilling the requirements for a degree in philosophy. He obtained the degree after only three years, and was 19 years old when he graduated. He then began a Ph.D. in philosophy, still at the Champaign–Urbana campus. However, after failin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinal Assignment
In set theory, the concept of cardinality is significantly developable without recourse to actually defining cardinal numbers as objects in the theory itself (this is in fact a viewpoint taken by Frege; Frege cardinals are basically equivalence classes on the entire universe of sets, by equinumerosity). The concepts are developed by defining equinumerosity in terms of functions and the concepts of one-to-one and onto (injectivity and surjectivity); this gives us a quasi-ordering relation :A \leq_c B\quad \iff\quad (\exists f)(f : A \to B\ \mathrm) on the whole universe by size. It is not a true partial ordering because antisymmetry need not hold: if both A \leq_c B and B \leq_c A, it is true by the Cantor–Bernstein–Schroeder theorem that A =_c B i.e. ''A'' and ''B'' are equinumerous, but they do not have to be literally equal (see isomorphism). That at least one of A \leq_c B and B \leq_c A holds turns out to be equivalent to the axiom of choice. Nevertheless, most of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limit Cardinal
In mathematics, limit cardinals are certain cardinal numbers. A cardinal number ''λ'' is a weak limit cardinal if ''λ'' is neither a successor cardinal nor zero. This means that one cannot "reach" ''λ'' from another cardinal by repeated successor operations. These cardinals are sometimes called simply "limit cardinals" when the context is clear. A cardinal ''λ'' is a strong limit cardinal if ''λ'' cannot be reached by repeated powerset operations. This means that ''λ'' is nonzero and, for all ''κ'' < ''λ'', 2''κ'' < ''λ''. Every strong limit cardinal is also a weak limit cardinal, because ''κ''+ ≤ 2''κ'' for every cardinal ''κ'', where ''κ''+ denotes the successor cardinal of ''κ''. The first infinite cardinal, (), is a strong limit cardinal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Successor Ordinal
In set theory, the successor of an ordinal number ''α'' is the smallest ordinal number greater than ''α''. An ordinal number that is a successor is called a successor ordinal. The ordinals 1, 2, and 3 are the first three successor ordinals and the ordinals ω+1, ω+2 and ω+3 are the first three infinite successor ordinals. Properties Every ordinal other than 0 is either a successor ordinal or a limit ordinal.. In Von Neumann's model Using von Neumann's ordinal numbers (the standard model of the ordinals used in set theory), the successor ''S''(''α'') of an ordinal number ''α'' is given by the formula :S(\alpha) = \alpha \cup \. Since the ordering on the ordinal numbers is given by ''α'' < ''β'' if and only if ''α'' ∈ ''β'', it is immediate that there is no ordinal number between α and ''S''(''α''), and it is also clear that ''α'' < ''S''(''α''). Ordinal addition The successor operation can be used to defin ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Replacement
In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF. The axiom schema is motivated by the idea that whether a class is a set depends only on the cardinality of the class, not on the rank of its elements. Thus, if one class is "small enough" to be a set, and there is a surjection from that class to a second class, the axiom states that the second class is also a set. However, because ZFC only speaks of sets, not proper classes, the schema is stated only for definable surjections, which are identified with their defining formulas. Statement Suppose P is a definable binary relation (which may be a proper class) such that for every set x there is a unique set y such that P(x,y) holds. There is a corresponding definable function F_P, where F_P(x)=y if and only if P(x,y). Consid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aleph Number
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ). The smallest cardinality of an infinite set is that of the natural numbers, denoted by \aleph_0 (read ''aleph-nought'', ''aleph-zero'', or ''aleph-null''); the next larger cardinality of a well-ordered set is \aleph_1, then \aleph_2, then \aleph_3, and so on. Continuing in this manner, it is possible to define an infinite cardinal number \aleph_ for every ordinal number \alpha, as described below. The concept and notation are due to Georg Cantor, who defined the notion of cardinality and realized that infinite sets can have different cardinalities. The aleph numbers differ from the infinity (\infty) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Well-order
In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then called a well-ordered set (or woset). In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element. Every element of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than . There may be elements, besides the least element, that have no predecessor (see below for an example). A well-ordered set contains for every subset with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of in . If ≤ is a non-strict well ordering, then < is a st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinal Number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter \aleph (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for two infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is gre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |