Stepper
   HOME

TheInfoList



OR:

A stepper is a device used in the manufacture of
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s (ICs) that is similar in operation to a
slide projector A slide projector is an opto-mechanical device for showing photographic slides. 35 mm slide projectors, direct descendants of the larger-format magic lantern, first came into widespread use during the 1950s as a form of occasional hom ...
or a photographic enlarger. ''Stepper'' is short for step-and-repeat camera. Steppers are an essential part of the complex process, called
photolithography In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect ...
, which creates millions of microscopic circuit elements on the surface of chips of silicon. These chips form the heart of ICs such as computer processors, memory chips, and many other devices. The stepper emerged in the late 1970s but did not become widespread until the 1980s. This was because it was replacing an earlier technology, the mask aligner. Aligners imaged the entire surface of a wafer at the same time, producing many chips in a single operation. In contrast, the stepper imaged only one chip at a time, and was thus much slower to operate. The stepper eventually displaced the aligner when the relentless forces of Moore's Law demanded that smaller feature sizes be used. Because the stepper imaged only one chip at a time it offered higher resolution and was the first technology to the 1 micron limit. The addition of auto-alignment systems reduced the setup time needed to image multiple ICs, and by the late 1980s, the stepper had almost entirely replaced the aligner in the high-end market. The stepper was itself replaced by the step-and-scan systems (scanners) which offered an additional
order of magnitude An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic di ...
resolution advance, and work by scanning only a small portion of the mask for an individual IC, and thus require much longer operation times than the original steppers. These became widespread during the 1990s and essentially universal by the 2000s. Today, step-and-scan systems are so widespread that they are often simply referred to as steppers.


History

1957: Attempts to miniaturize electronic circuits started back in 1957, when Jay Lathrop and James Nall of the U.S. Army's Diamond Ordnance Fuse Laboratories were granted a US2890395A patent for photolithographic technique that could be used to deposit a thin-film metal strips that in turn used to connect discrete transistors on a ceramic plate. It was also used to etch holes in the
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
(SiO2) layers to microfabricate diode arrays. Later, 1959, Lathrop went o
Texas Instruments Texas Instruments Incorporated (TI) is an American technology company headquartered in Dallas, Texas, that designs and manufactures semiconductors and various integrated circuits, which it sells to electronics designers and manufacturers globall ...
, working for
Jack Kilby Jack St. Clair Kilby (November 8, 1923 – June 20, 2005) was an American electrical engineer who took part (along with Robert Noyce of Fairchild) in the realization of the first integrated circuit while working at Texas Instruments (TI) in 1 ...
, and Nall joined Fairchild Semiconductor. 1958: Based on their works,
Jay Last Jay Taylor Last (October 18, 1929 – November 11, 2021) was an American physicist, silicon pioneer, and member of the so-called " traitorous eight" that founded Silicon Valley. Early life and education Last was born in Butler, Pennsylvania, on ...
and Robert Noyce at Fairchild Semiconductor built one of the first «step-and-repeat» cameras that repeated identical patterns of the transistors on a single wafer using photolithography. 1959: (Or no later 1961); The David W. Mann division of GCA Corporation became the first company to make commercial step and repeat mask reduction devices called photo-repeaters, which were the predcessors of modern day photolithography steppers. The company was later sold to GCA Corporation/Mann and Perkin Elmer. 1970: the Cobilt company was founded by a group of three engineers from Germany and England (from Kasper Instruments), and one
salesman Sales are activities related to selling or the number of goods sold in a given targeted time period. The delivery of a service for a cost is also considered a sale. The seller, or the provider of the goods or services, completes a sale in r ...
Peter Wolken. The company made what would later be called wafer steppers or lithography machines, at the time referred as '' mask aligners''. The throughput of this machine was one 2-Inches wide wafer at a time. The Cobilt, which also traded abroad and had plants in Asia (Hong-Kong, Korea, etc.), in Europe was originally represented by a company called Advanced Semiconductor Materials (ASM) run by in
Holland Holland is a geographical regionG. Geerts & H. Heestermans, 1981, ''Groot Woordenboek der Nederlandse Taal. Deel I'', Van Dale Lexicografie, Utrecht, p 1105 and former province on the western coast of the Netherlands. From the 10th to the 16th c ...
, who have founded the ASML in the mid of 1960s. Around 1971 or so the Cobilt was acquired by
Computervision Computervision, Inc. (CV) was an early pioneer in Computer Aided Design and Manufacturing (CAD/ CAM). Computervision was founded in 1969 by Marty Allen and Philippe Villers, and headquartered in Bedford, Massachusetts, United States. Its early ...
, which had greatly automated Cobilt machine. 1973:
Perkin-Elmer PerkinElmer, Inc., previously styled Perkin-Elmer, is an American global corporation focused in the business areas of diagnostics, life science research, food, environmental and industrial testing. Its capabilities include detection, imaging, inf ...
had introduced
Micralign The Perkin-Elmer Micralign was a family of aligners introduced in 1973. Micralign was the first projection aligner, a concept that dramatically improved semiconductor fabrication. According to the Chip History Center, it "literally made the modern ...
projection aligner. It helped to decrease amount of defective chips that resulted in low yields and greatly boosted IC industry by helping to lower prices on chips.


The stepper's role in photolithography

Integrated circuits (ICs) are produced in a process known as
photolithography In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect ...
. The process starts with a large highly purified cylindrical crystal of the semiconductor material known as a boule. Thin slices are cut off the boule to form disks, and then undergo initial processing and treatment to create a
silicon wafer In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serv ...
. Elements of the circuit to be created on the IC are reproduced in a pattern of transparent and opaque areas on the surface of a glass or plastic plate called a
photomask A photomask is an opaque plate with holes or transparencies that allow light to shine through in a defined pattern. They are commonly used in photolithography and the production of integrated circuits (ICs or "chips") in particular. Masks are used ...
or reticle. The wafer is coated with a photosensitive material called
photoresist A photoresist (also known simply as a resist) is a light-sensitive material used in several processes, such as photolithography and photoengraving, to form a patterned coating on a surface. This process is crucial in the electronic industry. ...
. The mask is positioned over the wafer and bright light, normally
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
, is shone through the mask. Exposure to the light causes sections of the resist to either harden or soften, depending on the process. After exposure, the wafer is developed like photographic film, causing the photoresist to dissolve in certain areas according to the amount of light the areas received during exposure. These areas of photoresist and no photoresist reproduce the pattern on the reticle. The developed wafer is then exposed to
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
s. The solvent etches away the silicon in the parts of the wafer that are no longer protected by the photoresist coating. Other chemicals are used to change the electrical characteristics of the silicon in the bare areas. The wafer is then cleaned, recoated with photoresist, then passed through the process again in a process that creates the circuit on the silicon, layer by layer. Once the entire process is complete, the wafer is sawn apart into individual chips, tested, and packaged for sale.


Aligners vs. steppers

Before steppers, wafers were exposed using mask aligners, which pattern the entire wafer at once. Masks for these systems would contain many individual ICs patterned across the mask. Between each step, the operator would use a
microscope A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisibl ...
to align the wafer with the next mask to be applied. During the 1970s, aligners generally worked at a one-to-one magnification, which limited the amount of detail on the wafer to about whatever could be produced on the mask. As feature sizes shrank, following Moore's law, the construction of these complex multi-chip masks became very difficult. In 1975, GCA introduced the first step-and-scan camera, which simplified the process of making masks. In this system, a single parent mask, known as the ''reticle'', was produced at large scale so it could be mechanically robust. This was imaged through a photographic projector, shrinking the projected image 5 to 10 times. The mechanism imaged the reticle onto a photographic plate, moved the reticle to another position, and repeated this process. The result was a mask containing many precise images of the original reticle pattern. GCA continued development of the hardware as a direct-to-wafer system, eliminating the need to produce a mask from the reticle and instead using the reticle to expose the wafer directly. Because the reticle was at a much larger scale than the final image, the resolution could be improved, as this was formerly limited to the resolution of the mask itself. To pattern the entire wafer, the mask is repeatedly moved, or ''stepped'', across the surface of the wafer. This requires the stepping mechanism to be incredibly accurate, demanding precise alignment. The alignment process is normally automated, eliminating manual operation. As each exposure takes as long as the entire mask in an aligner, steppers are inherently slower to use than aligners, so aligners remain in use for roles where higher resolutions are not required. Steppers increased the possible resolution many times over that of the aligners and were the first systems to allow features smaller than 1 micron. However, the relentless drive of Moore's law pushed the industry to the point where even the maximum magnifications possible in the projection system were not enough to continue shrinking the feature sizes. This led to the 1990 introduction of the step-and-scan systems, which combine a stepper system with a scanner that images only a portion of the mask at a time. Doing so allows much better focus over the tiny part of the mask, although it also makes the IC production process much slower. As of 2008, step-and-scan systems are the most widely used systems for high-end
semiconductor device fabrication Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuit (IC) chips such as modern computer processors, microcontrollers, and memory chips such as NAND flash and DRAM that are pres ...
.


Major subassemblies

A typical stepper has the following subassemblies: wafer loader, wafer stage, wafer alignment system, reticle loader, reticle stage, reticle alignment system, reduction lens, and illumination system. Process programs for each layer printed on the wafer are executed by a control system centering on a computer that stores the process program, reads it, and communicates with the various subassemblies of the stepper in carrying out the program's instructions. The components of the stepper are contained in a sealed chamber that is maintained at a precise temperature to prevent distortions in the printed patterns that might be caused by expansion or contraction of the wafer due to temperature variations. The chamber also contains other systems that support the process, such as
air conditioning Air conditioning, often abbreviated as A/C or AC, is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as 'comfort cooling') and in some cases also strictly controlling ...
,
power supplies A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a res ...
, control boards for the various electrical components, and others.


Basic operation

The silicon wafers are coated with photoresist, and placed in a cassette or "boat" that holds a number of wafers. This is then placed in a part of the stepper called the wafer loader, usually located at the lower front of the stepper. A
robot A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be c ...
in the wafer loader picks up one of the wafers from the cassette and loads it onto the wafer stage where it is aligned to enable another, finer alignment process that will occur later on. The pattern of the circuitry for each chip is contained in a pattern etched in chrome on the reticle, which is a plate of transparent
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical form ...
. A typical reticle used in steppers is 6 inches square and has a usable area of 104mm by 132mm. A variety of reticles, each appropriate for one stage in the process, are contained in a rack in the reticle loader, usually located at the upper front of the stepper. Before the wafer is exposed a reticle is loaded onto the reticle stage by a robot, where it is also very precisely aligned. Since the same reticle can be used to expose many wafers, it is loaded once before a series of wafers is exposed, and is realigned periodically. Once the wafer and reticle are in place and aligned, the wafer stage, which is moved very precisely in the X and Y directions (front to back and left to right) by worm screws or linear motors, carries the wafer so that the first of the many patterns (or "shots") to be exposed on it is located below the lens, directly under the reticle. Although the wafer is aligned after it is placed on the wafer stage, this alignment is not sufficient to ensure that the layer of circuitry to be printed onto the wafer exactly overlays previous layers already there. Therefore, each shot is aligned using special alignment marks that are located in the pattern for each final IC chip. Once this fine alignment is completed, the shot is exposed by light from the stepper's illumination system that passes through the reticle, through a reduction lens, and on to the surface of the wafer. A process program or "recipe" determines the length of the exposure, the reticle used, as well as other factors that affect the exposure. Each shot located in a grid pattern on the wafer and is exposed in turn as the wafer is stepped back and forth under the lens. When all shots on the wafer are exposed, the wafer is unloaded by the wafer loader robot, and another wafer takes its place on the stage. The exposed wafer is eventually moved to a developer where the
photoresist A photoresist (also known simply as a resist) is a light-sensitive material used in several processes, such as photolithography and photoengraving, to form a patterned coating on a surface. This process is crucial in the electronic industry. ...
on its surface is exposed to developing chemicals that wash away areas of the photoresist, based on whether or not they were exposed to the light passing through the reticle. The developed surface is then subjected to other processes of
photolithography In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect ...
.


Illumination and the challenges of improving resolution

The greatest limitation on the ability to produce increasingly finer lines on the surface of the wafer has been the
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
of the
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 tera ...
used in the exposure system. As the required lines have become narrower and narrower, illumination sources producing light with progressively shorter wavelengths have been put into service in steppers and scanners. An alternative to conventional light based lithography is
nanoimprint lithography Nanoimprint lithography (NIL) is a method of fabricating nanometer scale patterns. It is a simple nanolithography process with low cost, high throughput and high resolution. It creates patterns by mechanical deformation of imprint resist and subse ...
. The ability of an exposure system, such as a stepper, to resolve narrow lines is limited by the wavelength of the light used for illumination, the ability of the lens to capture light (or actually orders of
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
) coming at increasingly wider angles (called numerical aperture or N.A.), and various improvements in the process itself. This is expressed by the following equation: \mathrm is the critical dimension, or finest line resolvable, k_1 is a coefficient expressing process-related factors, \lambda is the wavelength of the light, and \mathrm is the numerical aperture. Decreasing the wavelength of the light in the illumination system increases the resolving power of the stepper. Twenty years ago, the
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
"g-line" (436 nm) of the mercury
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors i ...
was used to create lines in the 750 nm range in steppers that employed mercury lamps as their illumination source. Several years later systems employing the "i-line" (365 nm) from mercury lamps were introduced to create lines as low as 350 nm. As the desired line widths approached and eventually became narrower than the wavelength of the light used to create them, a variety of resolution enhancement techniques were developed to make this possible, such as
phase shifting In physics and mathematics, the phase of a periodic function F of some real variable t (such as time) is an angle-like quantity representing the fraction of the cycle covered up to t. It is denoted \phi(t) and expressed in such a scale that it v ...
reticles and various techniques for manipulating the angles of the exposure light in order to maximize the resolving power of the lens. Eventually however, the desired line widths became narrower than what was possible using mercury lamps, and near the middle of the 2000s, the semiconductor industry moved towards steppers that employed krypton-fluoride (KrF)
excimer laser An excimer laser, sometimes more correctly called an exciplex laser, is a form of ultraviolet laser which is commonly used in the production of microelectronic devices, semiconductor based integrated circuits or "chips", eye surgery, and microm ...
s producing 248 nm light. Such systems are currently being used to produce lines in the 110 nm range. Lines as low as 32 nm are being resolved by production-capable steppers using
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
-fluoride (ArF) excimer lasers that emit light with a wavelength of 193 nm. Although fluoride (F2) lasers are available that produce 157 nm light, they are not practical because of their low power and because they quickly degrade photoresist and other materials used in the stepper. Since practical light sources with wavelengths narrower than these lasers have not been available, manufacturers have sought to improve
resolution Resolution(s) may refer to: Common meanings * Resolution (debate), the statement which is debated in policy debate * Resolution (law), a written motion adopted by a deliberative body * New Year's resolution, a commitment that an individual mak ...
by reducing the process coefficient k_1. This is done by further improving techniques for manipulating the light as it passes through the illumination system and the reticle, as well as improving techniques for processing the wafer before and after exposure. Manufacturers have also introduced ever larger and more expensive lenses as a means of increasing the numerical aperture. However, these techniques are approaching their practical limit, and line widths in the 45 nm range appear to be near the best that can be achieved with conventional design. Ultimately, other sources of illumination will have to be put to use, such as electron beams,
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s or similar sources of
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
with wavelengths much shorter than visible light. However, in order to delay as long as possible the vast expense and difficulty of adopting a whole new type of illumination technology, manufacturers have turned to a technique, previously used in
microscope A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisibl ...
s, for increasing the numerical aperture of the lens by allowing the light to pass through
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
instead of
air The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing f ...
. This method, called immersion lithography, is the current cutting edge of practical production technology. It works because numerical aperture is a function of the maximum angle of light that can enter the lens and the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
of the medium through which the light passes. When water is employed as the medium, it greatly increases numerical aperture, since it has a refractive index of 1.44 at 193 nm, while air has an index of 1.0003. Current production machines employing this technology are capable of resolving lines in the 32 nm range, and may eventually be able to achieve lines of 30 nm.


Scanners

Modern scanners are steppers that increase the length of the area exposed in each shot (the exposure field) by moving the reticle stage and wafer stage in opposite directions to each other during the exposure. Instead of exposing the entire field at once, the exposure is made through an "exposure slit" that is as wide as the exposure field, but only a fraction of its length (such as a 9x25 mm slit for a 35x25 mm field). The image from the exposure slit is scanned across the exposure area. There are several benefits to this technique. The field can be exposed with a lesser reduction of size from the reticle to the wafer (such as 4x reduction on a scanner, compared with 5x reduction on a stepper), while allowing a field size much larger than that which can be exposed with a typical stepper. Also the optical properties of the projection lens can be optimized in the area through which the image of the projection slit passes, while optical aberrations can be ignored outside of this area, because they will not affect the exposed area on the wafer. Successful scanning requires extremely precise synchronization between the moving reticle and wafer stages during the exposure. Accomplishing this presents many technological challenges.


See also

* Stepping level *
Photolithography In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect ...
* Extreme ultraviolet lithography *
Semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
*
Integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
Stepper makers: * ASML * Ultratech *
Nikon (, ; ), also known just as Nikon, is a Japanese multinational corporation headquartered in Tokyo, Japan, specializing in optics and imaging products. The companies held by Nikon form the Nikon Group. Nikon's products include cameras, camera ...
, Precision division *
Canon Canon or Canons may refer to: Arts and entertainment * Canon (fiction), the conceptual material accepted as official in a fictional universe by its fan base * Literary canon, an accepted body of works considered as high culture ** Western ca ...
*
Intel Intel Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California. It is the world's largest semiconductor chip manufacturer by revenue, and is one of the developers of the x86 seri ...
*
Rudolph Technologies Onto Innovation Inc. is an American semiconductor company formed in 2019 from the merger of Rudolph Technologies, Inc. and Nanometrics Incorporated. Onto Innovation is traded as on the New York Stock Exchange, it is a provider of process and pro ...
* SUSS MicroTec


Notes

{{Notelist


References

Lithography (microfabrication)