Shape theory of olfaction
   HOME

TheInfoList



OR:

The docking theory of olfaction proposes that the smell of an odorant molecule is due to a range of weak
non-covalent interactions In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The ...
between the odorant ligandand one or more G protein-coupled odorant receptors (found in the
nasal Nasal is an adjective referring to the nose, part of human or animal anatomy. It may also be shorthand for the following uses in combination: * With reference to the human nose: ** Nasal administration, a method of pharmaceutical drug delivery * ...
epithelium Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
). These include
intermolecular force An intermolecular force (IMF; also secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles (e.g. ...
s, such as dipole-dipole and Van der Waals interactions, as well as
hydrogen bond In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
ing. More specific proposed interactions include metal-ion, ion-ion, cation-pi and pi-stacking. Interactions can be influenced by the
hydrophobic effect The hydrophobic effect is the observed tendency of nonpolar substances to aggregate in an aqueous solution and to be excluded by water. The word hydrophobic literally means "water-fearing", and it describes the segregation of water and nonpola ...
. Conformational changes can also have a significant impact on interactions with receptors, as ligands have been shown to interact with ligands without being in their conformation of lowest energy. While this theory of odorant recognition has previously been described as the shape theory of olfaction, which primarily considers molecular shape and size, this earlier model is oversimplified, since two odorants may have similar shapes and sizes but are subject to different intermolecular forces and therefore activate different combinations of odorant receptors, allowing them to be distinguished as different smells by the brain. Other names for the model, such as “lock and key” and "hand in glove", are also misnomers: there are only 396 unique olfactory receptors and too many distinguishable smells for a one-to-one correlation between an odorant and a receptor. In a seminal paper published in 2023 in ''Nature'' which is consistent with the above description of the docking theory, Billesbølle and coworkers use cryo-electron microscopy to determine for the first time the structure of a human OR activated by an odorant, namely OR51E2 activated by propionate. The authors indicate that "propionate binds in a small cavity in OR51E2 that is completely occluded from the external solvent. It binds through two types of contact — specific ionic and hydrogen bonds, and non-specific hydrophobic contacts." Because of the specific shape of the binding pocket, OR51E2 is said to be specific for propionate and "does not bind to fatty acids with longer carbon chains."Nature https://doi.org/10.1038/d41586-023-00439-w (2022).Nature https://doi.org/10.1038/s41586-023-05798-y (2023). The docking theory of olfaction previously relied on the known properties of other
G protein-coupled receptor G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related ...
s that have been crystallized, as well as structural predictions given the known primary structure, to produce a likely olfactory receptor model. Though olfactory receptors are similar to other G protein-coupled receptors, there are notable differences in the primary structure that make exact comparisons unfeasible. Because of this, predicted olfactory receptor structures have been aided by the development of new structure-predicting software. From this data, simpler odorant-receptor binding models have been developed into more nuanced ideas which consider the distortion of flexible molecules so as to form optimal interactions with binding partners. These modifications help the model to conform better to what is known of the molecular docking of non-olfactory G-protein coupled receptors.


History

In 1949, R.W. Moncrieff published an article in ''American Perfumer'' called "What is odor: a new theory," which used
Linus Pauling Linus Carl Pauling ( ; February 28, 1901August 19, 1994) was an American chemist and peace activist. He published more than 1,200 papers and books, of which about 850 dealt with scientific topics. ''New Scientist'' called him one of the 20 gre ...
's notion of shape-based molecular interactions to propose a shape-based theory of odor. This superseded the older vibration theory of olfaction, and, renamed the docking theory of olfaction to more accurately reflect a range of non-covalent interactions in addition to shape, remains the mainstream theory, in both commercial fragrance chemistry and academic molecular biology. Three years after Moncrieff proposed the theory, John Amoore speculated further that the over ten thousand smells distinguishable by the human olfaction system resulted from the combination of seven basic primary odors correlating to odor receptors for each, much as the spectrum of perceived colors in visible light is generated by the activation of three primary color receptors. Amoore's seven primary odors included sweaty, spermous, fishy, malty, urinous and musky. His most convincing work was done on the camphoraceous odor, for which he posited a hemispherical socket in which spherical molecules, such as
camphor Camphor () is a waxy, colorless solid with a strong aroma. It is classified as a terpenoid and a cyclic ketone. It is found in the wood of the camphor laurel (''Cinnamomum camphora''), a large evergreen tree found in East Asia; and in the kapu ...
, cyclooctane, and
naphthalene Naphthalene is an organic compound with formula . It is the simplest polycyclic aromatic hydrocarbon, and is a white Crystal, crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 Parts-per notation ...
could bind. When Linda Buck and
Richard Axel Richard Axel (born July 2, 1946) is an American molecular biologist and university professor in the Department of Neuroscience at Columbia University and investigator at the Howard Hughes Medical Institute. His work on the olfactory system won h ...
published their
Nobel Prize The Nobel Prizes ( ; ; ) are awards administered by the Nobel Foundation and granted in accordance with the principle of "for the greatest benefit to humankind". The prizes were first awarded in 1901, marking the fifth anniversary of Alfred N ...
winning research on the olfactory receptors in 1991, they identified in mice 1,000 G-protein-coupled receptors used for olfaction. Since all types of G-protein receptors currently known are activated through binding (docking) of molecules with highly specific conformations (shapes) and non-covalent interactions, it is assumed that olfactory receptors operate in a similar fashion. Further research on human olfaction systems identified 347 olfactory receptors. A recent version of the previously named shape theory, also known as odotope theory or Weak Shape Theory, holds that a combination of activated receptors is responsible for any one smell, as opposed to the older model of one receptor, one shape, one smell. Receptors in the odotope model recognize only small structural features on each molecule, and the brain is responsible for processing the combined signal into an interpreted smell. Much current work on the docking theory focuses on neural processing, rather than the specific interaction between odorant and receptor that generates the original signal.


Support

The 2023 cryo-electron microscopy structural study of the binding of propionate to human olfactory receptor OR51E2 published in ''Nature'' is fully consistent with the docking theory of olfaction for the particular odorant and receptor involved. Numerous studies have been conducted to elucidate the complex relationship between the docking of an odorous molecule and its perceived smell character, and fragrance chemists have proposed structure models for the smells of amber, sandalwood, and camphor, among others. A study by Leslie B. Vosshall and Andreas Keller, published in '' Nature Neuroscience'' in 2004, tested several key predictions of the competing vibration theory and found no experimental support for it. The data were described by Vosshall as "consistent with the shape theory", although she added that "they don't prove the shape theory". Another study also showed that molecular volume of odorants can determine the upper limits of neural responses of olfactory receptors in ''Drosophila''. A 2015 ''Chemical & Engineering News'' article on the "shape" versus "vibration" debate notes that in the "acrimonious, nearly two-decade-long controversy...on the one side are a majority of sensory scientists who argue that our odorant receptors detect specific scent molecules on the basis of their shapes and chemical properties. On the other side are a handful of scientists who posit that an odorant receptor detects an odor molecule's vibrational frequencies". The article indicates that a new study, led by Block et al., takes aim at the vibrational theory of olfaction, finding no evidence that olfactory receptors distinguish vibrational states of molecules. Specifically, Block et al. report that the human musk-recognizing receptor, OR5AN1, identified using a heterologous
olfactory receptor Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
expression system and robustly responding to cyclopentadecanone and muscone, fails to distinguish isotopomers of these compounds in vitro. Furthermore, the mouse (methylthio)methanethiol-recognizing receptor, MOR244-3, as well as other selected human and mouse
olfactory receptor Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
s, responded similarly to normal, deuterated, and carbon-13 isotopomers of their respective ligands, paralleling results found with the musk receptor OR5AN1. Based on these findings, the authors conclude that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other
olfactory receptor Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
s examined. Additionally, theoretical analysis by the authors shows that the proposed
electron transfer Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. Electrochemical processes are ET reactio ...
mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of nonodorant molecular vibrational modes. The authors conclude: "These and other concerns about
electron transfer Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. Electrochemical processes are ET reactio ...
at
olfactory receptor Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
s, together with our extensive experimental data, argue against the plausibility of the vibration theory." In commenting on this work, Vosshall writes "In PNAS, Block et al.... shift the "shape vs. vibration" debate from olfactory psychophysics to the biophysics of the ORs themselves. The authors mount a sophisticated multidisciplinary attack on the central tenets of the vibration theory using synthetic organic chemistry, heterologous expression of
olfactory receptor Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
s, and theoretical considerations to find no evidence to support the vibration theory of smell." While
Turin Turin ( , ; ; , then ) is a city and an important business and cultural centre in northern Italy. It is the capital city of Piedmont and of the Metropolitan City of Turin, and was the first Italian capital from 1861 to 1865. The city is main ...
comments that Block used "cells in a dish rather than within whole organisms" and that "expressing an
olfactory receptor Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
in human embryonic kidney cells doesn't adequately reconstitute the complex nature of
olfaction The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste. In humans, ...
..." Vosshall responds "Embryonic kidney cells are not identical to the cells in the nose ... but if you are looking at receptors, it's the best system in the world."


Challenges

*Despite numerous studies, docking theory has yet to discover structure-odor relations with great predictive power. *Similarly shaped molecules with different molecular vibrations have different smells (
metallocene A metallocene is a compound typically consisting of two cyclopentadienyl anions (, abbreviated Cp) bound to a metallic element, metal center (M) in the oxidation state II, with the resulting general formula Closely related to the metallocenes are ...
experiment and
deuterium Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
replacement of molecular
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
). In the
metallocene A metallocene is a compound typically consisting of two cyclopentadienyl anions (, abbreviated Cp) bound to a metallic element, metal center (M) in the oxidation state II, with the resulting general formula Closely related to the metallocenes are ...
experiment, Turin observes that while ferrocene and nickelocene have nearly the same molecular sandwich structures, they possess distinct odors. He suggests that "because of the change in size and mass, different metal atoms give different frequencies for those vibrations that involve the metal atoms," an observation which is compatible with the vibration theory. However it has been noted that, in contrast to ferrocene, nickelocene rapidly decomposes in air and the cycloalkene odor observed for nickelocene, but not for ferrocene, could simply reflect decomposition of nickelocene giving trace amounts of hydrocarbons such as cyclopentadiene. The challenge regarding smell of molecules with similar structures is contrary to the results obtained with silicon analogues of bourgeonal and lilial, which despite their differences in molecular vibrations have similar smells and similarly activate the most responsive human receptor, hOR17-4, with studies showing that the human musk receptor OR5AN1 responds identically to deuterated and non-deuterated musks and with single-neuron comparison of the olfactory receptor response to deuterated and nondeuterated odorants. *Differently shaped molecules with similar molecular vibrations have similar smells (replacement of
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
double bonds by
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
atoms and the disparate shaped amber odorants). *Hiding
functional group In organic chemistry, a functional group is any substituent or moiety (chemistry), moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions r ...
s does not hide the group's characteristic odor. However this is not always the case, since ''ortho''-substituted arylisonitriles and thiophenols have far less offensive odors than the parent compounds. *Very small molecules of similar shape, which seem most likely to be confused by a shape-based system, have extremely distinctive odors, such as
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is toxic, corrosive, and flammable. Trace amounts in ambient atmosphere have a characteristic foul odor of rotten eggs. Swedish chemist ...
. However, it has been suggested that metals such as Cu(I) may be associated with a metallo-receptor site in olfaction for strong-smelling volatiles which are also good metal-coordinating ligands, such as thiols. This hypothesis was confirmed in the specific cases of thiol-responsive mouse and human olfactory receptors. *It is claimed that odor descriptions in the olfaction literature correlate more strongly with their vibrational frequencies than with their molecular shape.


See also

* Odotope theory * Vibration theory of olfaction


References


Further reading

* * *{{cite journal, last1=Zozulya , first1=Sergey, first2= Fernando , last2=Echeverri , first3= Trieu , last3=Nguyen , year=2001, title=The human olfactory receptor repertoire, journal=Genome Biology, volume=2, issue=6, pages=research0018.1, doi=10.1186/gb-2001-2-6-research0018, pmid=11423007, pmc=33394, doi-access=free Olfactory system 1949 introductions Theories