Set (computing)
   HOME

TheInfoList



OR:

In
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includi ...
, a set is an
abstract data type In computer science, an abstract data type (ADT) is a mathematical model for data types. An abstract data type is defined by its behavior (semantics) from the point of view of a ''user'', of the data, specifically in terms of possible values, pos ...
that can store unique values, without any particular order. It is a computer implementation of the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
concept of a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. T ...
. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests a value for membership in a set. Some set data structures are designed for static or frozen sets that do not change after they are constructed. Static sets allow only query operations on their elements — such as checking whether a given value is in the set, or enumerating the values in some arbitrary order. Other variants, called dynamic or mutable sets, allow also the insertion and deletion of elements from the set. A
multiset In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the multiplicity of that e ...
is a special kind of set in which an element can appear multiple times in the set.


Type theory

In
type theory In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a fou ...
, sets are generally identified with their indicator function (characteristic function): accordingly, a set of values of type A may be denoted by 2^ or \mathcal(A). (Subtypes and subsets may be modeled by
refinement type In type theory, a refinement type is a type endowed with a predicate which is assumed to hold for any element of the refined type. Refinement types can express preconditions when used as function arguments or postconditions when used as return typ ...
s, and
quotient set In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
s may be replaced by
setoid In mathematics, a setoid (''X'', ~) is a set (or type) ''X'' equipped with an equivalence relation ~. A setoid may also be called E-set, Bishop set, or extensional set. Setoids are studied especially in proof theory and in type-theoretic fou ...
s.) The characteristic function F of a set S is defined as: :F(x) = \begin 1, & \mbox x \in S \\ 0, & \mbox x \not \in S \end In theory, many other abstract data structures can be viewed as set structures with additional operations and/or additional axioms imposed on the standard operations. For example, an abstract heap can be viewed as a set structure with a min(''S'') operation that returns the element of smallest value.


Operations


Core set-theoretical operations

One may define the operations of the algebra of sets: * union(''S'',''T''): returns the
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
of sets ''S'' and ''T''. * intersection(''S'',''T''): returns the intersection of sets ''S'' and ''T''. * difference(''S'',''T''): returns the
difference Difference, The Difference, Differences or Differently may refer to: Music * ''Difference'' (album), by Dreamtale, 2005 * ''Differently'' (album), by Cassie Davis, 2009 ** "Differently" (song), by Cassie Davis, 2009 * ''The Difference'' (al ...
of sets ''S'' and ''T''. * subset(''S'',''T''): a predicate that tests whether the set ''S'' is a subset of set ''T''.


Static sets

Typical operations that may be provided by a static set structure ''S'' are: * is_element_of(''x'',''S''): checks whether the value ''x'' is in the set ''S''. * is_empty(''S''): checks whether the set ''S'' is empty. * size(''S'') or cardinality(''S''): returns the number of elements in ''S''. *
iterate Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. ...
(''S'')
: returns a function that returns one more value of ''S'' at each call, in some arbitrary order. * enumerate(''S''): returns a list containing the elements of ''S'' in some arbitrary order. * build(''x''1,''x''2,…,''x''''n'',): creates a set structure with values ''x''1,''x''2,...,''x''''n''. * create_from(''collection''): creates a new set structure containing all the elements of the given collection or all the elements returned by the given
iterator In computer programming, an iterator is an object that enables a programmer to traverse a container, particularly lists. Various types of iterators are often provided via a container's interface. Though the interface and semantics of a given iterat ...
.


Dynamic sets

Dynamic set structures typically add: * create(): creates a new, initially empty set structure. ** create_with_capacity(''n''): creates a new set structure, initially empty but capable of holding up to ''n'' elements. * add(''S'',''x''): adds the element ''x'' to ''S'', if it is not present already. * remove(''S'', ''x''): removes the element ''x'' from ''S'', if it is present. * capacity(''S''): returns the maximum number of values that ''S'' can hold. Some set structures may allow only some of these operations. The cost of each operation will depend on the implementation, and possibly also on the particular values stored in the set, and the order in which they are inserted.


Additional operations

There are many other operations that can (in principle) be defined in terms of the above, such as: * pop(''S''): returns an arbitrary element of ''S'', deleting it from ''S''. * pick(''S''): returns an arbitrary element of ''S''. Functionally, the mutator pop can be interpreted as the pair of selectors (pick, rest), where rest returns the set consisting of all elements except for the arbitrary element. Can be interpreted in terms of iterate. *
map A map is a symbolic depiction emphasizing relationships between elements of some space, such as objects, regions, or themes. Many maps are static, fixed to paper or some other durable medium, while others are dynamic or interactive. Although ...
(''F'',''S'')
: returns the set of distinct values resulting from applying function ''F'' to each element of ''S''. *
filter Filter, filtering or filters may refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Filter (software), a computer program to process a data stream * Filter (video), a software component tha ...
(''P'',''S'')
: returns the subset containing all elements of ''S'' that satisfy a given
predicate Predicate or predication may refer to: * Predicate (grammar), in linguistics * Predication (philosophy) * several closely related uses in mathematics and formal logic: **Predicate (mathematical logic) **Propositional function **Finitary relation, o ...
''P''. * fold(''A''0,''F'',''S''): returns the value ''A'', ''S'', after applying ''A''i+1 := ''F''(''Ai'', ''e'') for each element ''e'' of ''S,'' for some binary operation ''F.'' ''F'' must be associative and commutative for this to be well-defined. * clear(''S''): delete all elements of ''S''. * equal(''S''1', ''S''2'): checks whether the two given sets are equal (i.e. contain all and only the same elements). * hash(''S''): returns a
hash value A hash function is any function that can be used to map data of arbitrary size to fixed-size values. The values returned by a hash function are called ''hash values'', ''hash codes'', ''digests'', or simply ''hashes''. The values are usually u ...
for the static set ''S'' such that if equal(''S''1, ''S''2) then hash(''S1'') = hash(''S2'') Other operations can be defined for sets with elements of a special type: * sum(''S''): returns the sum of all elements of ''S'' for some definition of "sum". For example, over integers or reals, it may be defined as fold(0, add, ''S''). * collapse(''S''): given a set of sets, return the union. For example, collapse()

. May be considered a kind of sum. * flatten(''S''): given a set consisting of sets and atomic elements (elements that are not sets), returns a set whose elements are the atomic elements of the original top-level set or elements of the sets it contains. In other words, remove a level of nesting – like collapse, but allow atoms. This can be done a single time, or recursively flattening to obtain a set of only atomic elements. For example, flatten()

. * nearest(''S'',''x''): returns the element of ''S'' that is closest in value to ''x'' (by some
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ...
). * min(''S''), max(''S''): returns the minimum/maximum element of ''S''.


Implementations

Sets can be implemented using various data structures, which provide different time and space trade-offs for various operations. Some implementations are designed to improve the efficiency of very specialized operations, such as nearest or union. Implementations described as "general use" typically strive to optimize the element_of, add, and delete operations. A simple implementation is to use a List (abstract data type), list, ignoring the order of the elements and taking care to avoid repeated values. This is simple but inefficient, as operations like set membership or element deletion are ''O''(''n''), as they require scanning the entire list. Sets are often instead implemented using more efficient data structures, particularly various flavors of tree (data structure), trees, tries, or hash tables. As sets can be interpreted as a kind of map (by the indicator function), sets are commonly implemented in the same way as (partial) maps (associative arrays) – in this case in which the value of each key-value pair has the unit type or a sentinel value (like 1) – namely, a self-balancing binary search tree for sorted sets (which has O(log n) for most operations), or a hash table for unsorted sets (which has O(1) average-case, but O(n) worst-case, for most operations). A sorted linear hash table may be used to provide deterministically ordered sets. Further, in languages that support maps but not sets, sets can be implemented in terms of maps. For example, a common programming idiom in Perl that converts an array to a hash whose values are the sentinel value 1, for use as a set, is: my %elements = map @elements; Other popular methods include Array data structure, arrays. In particular a subset of the integers 1..''n'' can be implemented efficiently as an ''n''-bit bit array, which also support very efficient union and intersection operations. A Bloom map implements a set probabilistically, using a very compact representation but risking a small chance of false positives on queries. The Boolean set operations can be implemented in terms of more elementary operations (pop, clear, and add), but specialized algorithms may yield lower asymptotic time bounds. If sets are implemented as sorted lists, for example, the naive algorithm for union(''S'',''T'') will take time proportional to the length ''m'' of ''S'' times the length ''n'' of ''T''; whereas a variant of the Merge algorithm, list merging algorithm will do the job in time proportional to ''m''+''n''. Moreover, there are specialized set data structures (such as the union-find algorithm, union-find data structure) that are optimized for one or more of these operations, at the expense of others.


Language support

One of the earliest languages to support sets was Pascal programming language, Pascal; many languages now include it, whether in the core language or in a standard library. * In C++, the Standard Template Library (STL) provides the set (C++), set template class, which is typically implemented using a binary search tree (e.g. red–black tree); Silicon Graphics International, SGI's STL also provides the hash_set template class, which implements a set using a hash table. C++11 has support for the unordered_set (C++), unordered_set template class, which is implemented using a hash table. In sets, the elements themselves are the keys, in contrast to sequenced containers, where elements are accessed using their (relative or absolute) position. Set elements must have a strict weak ordering. * The Rust (programming language) standard library provides the generic HashSet
/code> and
/code> types. * Java (programming language), Java offers the Interface (computer science), interface to support sets (with the class implementing it using a hash table), and the sub-interface to support sorted sets (with the class implementing it using a binary search tree). * Apple Inc., Apple's Foundation Kit, Foundation framework (part of Cocoa (API), Cocoa) provides the Objective-C classes NSSet
/code>, NSMutableSet
/code>, NSCountedSet
/code>,
/code>, and
/code>. The CoreFoundation APIs provide th
CFSet
an
CFMutableSet
types for use in C (programming language), C. * Python (programming language), Python has built-i
set and frozenset types
since 2.4, and since Python 3.0 and 2.7, supports non-empty set literals using a curly-bracket syntax, e.g.: ; empty sets must be created using set(), because Python uses to represent the empty dictionary. * The .NET Framework provides the generic HashSet
/code> and SortedSet
/code> classes that implement the generic ISet
/code> interface. * Smalltalk's class library includes Set and IdentitySet, using equality and identity for inclusion test respectively. Many dialects provide variations for compressed storage (NumberSet, CharacterSet), for ordering (OrderedSet, SortedSet, etc.) or for weak references (WeakIdentitySet). * Ruby (programming language), Ruby's standard library includes a set
/code> module which contains Set and SortedSet classes that implement sets using hash tables, the latter allowing iteration in sorted order. * OCaml's standard library contains a Set module, which implements a functional set data structure using binary search trees. * The Glasgow Haskell Compiler, GHC implementation of Haskell (programming language), Haskell provides a Data.Set
/code> module, which implements immutable sets using binary search trees. * The Tcl Tcllib package provides a set module which implements a set data structure based upon TCL lists. * The Swift (programming language), Swift standard library contains a Set type, since Swift 1.2. * JavaScript introduced Set
/code> as a standard built-in object with the ECMAScript 2015 standard. * Erlang (programming language), Erlang's standard library has a sets
/code> module. * Clojure has literal syntax for hashed sets, and also implements sorted sets. * LabVIEW has native support for sets, from version 2019. * Ada (programming language), Ada provides the Ada.Containers.Hashed_Sets
/code> and
/code> packages. As noted in the previous section, in languages which do not directly support sets but do support associative arrays, sets can be emulated using associative arrays, by using the elements as keys, and using a dummy value as the values, which are ignored.


Multiset

A generalization of the notion of a set is that of a
multiset In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the multiplicity of that e ...
or bag, which is similar to a set but allows repeated ("equal") values (duplicates). This is used in two distinct senses: either equal values are considered ''identical,'' and are simply counted, or equal values are considered ''equivalent,'' and are stored as distinct items. For example, given a list of people (by name) and ages (in years), one could construct a multiset of ages, which simply counts the number of people of a given age. Alternatively, one can construct a multiset of people, where two people are considered equivalent if their ages are the same (but may be different people and have different names), in which case each pair (name, age) must be stored, and selecting on a given age gives all the people of a given age. Formally, it is possible for objects in computer science to be considered "equal" under some equivalence relation but still distinct under another relation. Some types of multiset implementations will store distinct equal objects as separate items in the data structure; while others will collapse it down to one version (the first one encountered) and keep a positive integer count of the multiplicity of the element. As with sets, multisets can naturally be implemented using hash table or trees, which yield different performance characteristics. The set of all bags over type T is given by the expression bag T. If by multiset one considers equal items identical and simply counts them, then a multiset can be interpreted as a function from the input domain to the non-negative integers (natural numbers), generalizing the identification of a set with its indicator function. In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python. * C++'s Standard Template Library implements both sorted and unsorted multisets. It provides the Multiset (C++), multiset class for the sorted multiset, as a kind of Associative containers (C++), associative container, which implements this multiset using a self-balancing binary search tree. It provides the unordered_multiset class for the unsorted multiset, as a kind of Unordered associative containers (C++), unordered associative container, which implements this multiset using a hash table. The unsorted multiset is standard as of C++11; previously SGI's STL provides the hash_multiset class, which was copied and eventually standardized. * For Java (programming language), Java, third-party libraries provide multiset functionality: ** Apache Commons Collections provides the Bag
/code> and SortedBag interfaces, with implementing classes like HashBag and TreeBag. ** Google Guava provides the Multiset
/code> interface, with implementing classes like
/code> and
/code>. * Apple provides the NSCountedSet
/code> class as part of Cocoa (API), Cocoa, and the CFBag
/code> and CFMutableBag
/code> types as part of CoreFoundation. * Python (programming language), Python's standard library includes collections.Counter
/code>, which is similar to a multiset. * Smalltalk includes the Bag class, which can be instantiated to use either identity or equality as predicate for inclusion test. Where a multiset data structure is not available, a workaround is to use a regular set, but override the equality predicate of its items to always return "not equal" on distinct objects (however, such will still not be able to store multiple occurrences of the same object) or use an associative array mapping the values to their integer multiplicities (this will not be able to distinguish between equal elements at all). Typical operations on bags: * contains(''B'', ''x''): checks whether the element ''x'' is present (at least once) in the bag ''B'' * is_sub_bag(''B''1, ''B''2): checks whether each element in the bag ''B''1 occurs in ''B''1 no more often than it occurs in the bag ''B''2; sometimes denoted as ''B''1 ⊑ ''B''2. * count(''B'', ''x''): returns the number of times that the element ''x'' occurs in the bag ''B''; sometimes denoted as ''B'' # ''x''. * scaled_by(''B'', ''n''): given a natural number ''n'', returns a bag which contains the same elements as the bag ''B'', except that every element that occurs ''m'' times in ''B'' occurs ''n'' * ''m'' times in the resulting bag; sometimes denoted as ''n'' ⊗ ''B''. * union(''B''1, ''B''2): returns a bag containing just those values that occur in either the bag ''B''1 or the bag ''B''2, except that the number of times a value ''x'' occurs in the resulting bag is equal to (''B''1 # x) + (''B''2 # x); sometimes denoted as ''B''1 ⊎ ''B''2.


Multisets in SQL

In Relational database management system, relational databases, a table can be a (mathematical) set or a multiset, depending on the presence of unicity constraints on some columns (which turns it into a candidate key). SQL allows the selection of rows from a relational table: this operation will in general yield a multiset, unless the keyword DISTINCT is used to force the rows to be all different, or the selection includes the primary (or a candidate) key. In SQL#Standardization, ANSI SQL the MULTISET keyword can be used to transform a subquery into a collection expression: SELECT expression1, expression2... FROM table_name... is a general select that can be used as ''subquery expression'' of another more general query, while MULTISET(SELECT expression1, expression2... FROM table_name...) transforms the subquery into a ''collection expression'' that can be used in another query, or in assignment to a column of appropriate collection type.


See also

*Bloom filter *Disjoint set (data structure), Disjoint set *Set (mathematics)


Notes


References

{{Data structures Data types Composite data types Abstract data types