Map (higher-order Function)
   HOME
*



picture info

Map (higher-order Function)
In many programming languages, map is the name of a higher-order function that applies a given function to each element of a collection, e.g. a list or set, returning the results in a collection of the same type. It is often called ''apply-to-all'' when considered in functional form. The concept of a map is not limited to lists: it works for sequential containers, tree-like containers, or even abstract containers such as futures and promises. Examples: mapping a list Suppose we have a list of integers , 2, 3, 4, 5/code> and would like to calculate the square of each integer. To do this, we first define a function to square a single number (shown here in Haskell): square x = x * x Afterwards we may call >>> map square , 2, 3, 4, 5 which yields , 4, 9, 16, 25/code>, demonstrating that map has gone through the entire list and applied the function square to each element. Visual example Below, you can see a view of each step of the mapping process for a list ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Programming Language
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language. The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning), which are usually defined by a formal language. Some languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard) while other languages (such as Perl) have a dominant implementation that is treated as a reference. Some languages have both, with the basic language defined by a standard and extensions taken from the dominant implementation being common. Programming language theory is the subfield of computer science that studies the design, implementation, analysis, characterization, and classification of programming languages. Definitions There are many considerations when defining ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Function Composition (computer Science)
In computer science, function composition is an act or mechanism to combine simple functions to build more complicated ones. Like the usual composition of functions in mathematics, the result of each function is passed as the argument of the next, and the result of the last one is the result of the whole. Programmers frequently apply functions to results of other functions, and almost all programming languages allow it. In some cases, the composition of functions is interesting as a function in its own right, to be used later. Such a function can always be defined but languages with first-class functions make it easier. The ability to easily compose functions encourages factoring (breaking apart) functions for maintainability and code reuse. More generally, big systems might be built by composing whole programs. Narrowly speaking, function composition applies to functions that operate on a finite amount of data, each step sequentially processing it before handing it to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Procedural Programming
Procedural programming is a programming paradigm, derived from imperative programming, based on the concept of the '' procedure call''. Procedures (a type of routine or subroutine) simply contain a series of computational steps to be carried out. Any given procedure might be called at any point during a program's execution, including by other procedures or itself. The first major procedural programming languages appeared circa 1957–1964, including Fortran, ALGOL, COBOL, PL/I and BASIC. Pascal and C were published circa 1970–1972. Computer processors provide hardware support for procedural programming through a stack register and instructions for calling procedures and returning from them. Hardware support for other types of programming is possible, but no attempt was commercially successful (for example Lisp machines or Java processors). Procedures and modularity Modularity is generally desirable, especially in large, complicated programs. Inputs are usu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

S-expression
In computer programming, an S-expression (or symbolic expression, abbreviated as sexpr or sexp) is an expression in a like-named notation for nested list (tree-structured) data. S-expressions were invented for and popularized by the programming language Lisp, which uses them for source code as well as data. In the usual parenthesized syntax of Lisp, an S-expression is classically definedJohn McCarthy (1960/2006)Recursive functions of symbolic expressions. Originally published in Communications of the ACM. as # an atom of the form ''x'', or # an expression of the form (''x'' . ''y'') where ''x'' and ''y'' are S-expressions. This definition reflects LISP's representation of a list as a series of "cells", each one an ordered pair. In plain lists, ''y'' points to the next cell (if any), thus forming a list. The recursive clause of the definition means that both this representation and the S-expression notation can represent any binary tree. However, the representation can in princ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE