HOME

TheInfoList



OR:

Sweetness is a basic taste most commonly perceived when eating
food Food is any substance consumed by an organism for nutritional support. Food is usually of plant, animal, or fungal origin, and contains essential nutrients, such as carbohydrates, fats, proteins, vitamins, or minerals. The substance is inge ...
s rich in
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or double ...
s. Sweet tastes are generally regarded as pleasurable. In addition to sugars like
sucrose Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula . For human consumption, sucrose is extracted and refined ...
, many other chemical compounds are sweet, including aldehydes,
ketone In organic chemistry, a ketone is a functional group with the structure R–C(=O)–R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group –C(=O)– (which contains a carbon-oxygen double bo ...
s, and sugar alcohols. Some are sweet at very low concentrations, allowing their use as non-caloric
sugar substitute A sugar substitute is a food additive that provides a sweetness like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie () or low-calorie sweetener. Artificial sweeteners may be d ...
s. Such non-sugar sweeteners include saccharin and
aspartame Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with the trade names ...
. Other compounds, such as miraculin, may alter perception of sweetness itself. The perceived intensity of sugars and high-potency sweeteners, such as
Aspartame Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with the trade names ...
and
Neohesperidin Dihydrochalcone Neohesperidin dihydrochalcone, sometimes abbreviated to neohesperidin DC or simply NHDC, is an artificial sweetener derived from citrus. It is particularly effective in masking the bitter tastes of other compounds found in citrus, including limon ...
, are heritable, with gene effect accounting for approximately 30% of the variation. The chemosensory basis for detecting sweetness, which varies between both individuals and species, has only begun to be understood since the late 20th century. One theoretical model of sweetness is the multipoint attachment theory, which involves multiple binding sites between a sweetness receptor and a sweet substance. Studies indicate that responsiveness to sugars and sweetness has very ancient evolutionary beginnings, being manifest as
chemotaxis Chemotaxis (from '' chemo-'' + ''taxis'') is the movement of an organism or entity in response to a chemical stimulus. Somatic cells, bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemica ...
even in motile bacteria such as ''E. coli''. Newborn human infants also demonstrate preferences for high sugar concentrations and prefer solutions that are sweeter than
lactose Lactose is a disaccharide sugar synthesized by galactose and glucose subunits and has the molecular formula C12H22O11. Lactose makes up around 2–8% of milk (by mass). The name comes from ' (gen. '), the Latin word for milk, plus the suffix '' - ...
, the sugar found in breast milk. Sweetness appears to have the highest taste recognition threshold, being detectable at around 1 part in 200 of sucrose in solution. By comparison, bitterness appears to have the lowest detection threshold, at about 1 part in 2 million for quinine in solution. In the natural settings that human primate ancestors evolved in, sweetness intensity should indicate
energy density In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the ''useful'' or extract ...
, while bitterness tends to indicate toxicity. The high sweetness detection threshold and low bitterness detection threshold would have predisposed our primate ancestors to seek out sweet-tasting (and energy-dense) foods and avoid bitter-tasting foods. Even amongst leaf-eating primates, there is a tendency to prefer immature leaves, which tend to be higher in protein and lower in fibre and poisons than mature leaves. The 'sweet tooth' thus has an ancient heritage, and while food processing has changed consumption patterns, human physiology remains largely unchanged.


Examples of sweet substances

A great diversity of chemical compounds, such as aldehydes and
ketone In organic chemistry, a ketone is a functional group with the structure R–C(=O)–R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group –C(=O)– (which contains a carbon-oxygen double bo ...
s, are sweet. Among common biological substances, all of the simple carbohydrates are sweet to at least some degree.
Sucrose Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula . For human consumption, sucrose is extracted and refined ...
(table sugar) is the prototypical example of a sweet substance. Sucrose in solution has a sweetness perception rating of 1, and other substances are rated relative to this. For example, another sugar,
fructose Fructose, or fruit sugar, is a Ketose, ketonic monosaccharide, simple sugar found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. It is one of the three dietary monosaccharides, along with glucose and galacto ...
, is somewhat sweeter, being rated at 1.7 times the sweetness of sucrose. Some of the amino acids are mildly sweet: alanine, glycine, and
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form un ...
are the sweetest. Some other amino acids are perceived as both sweet and bitter. The sweetness of 20% solution of glycine in water compares to a solution of 10% glucose or 5% fructose. A number of plant species produce
glycosides In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. ...
that are sweet at concentrations much lower than common sugars. The most well-known example is glycyrrhizin, the sweet component of licorice root, which is about 30 times sweeter than sucrose. Another commercially important example is stevioside, from the South American shrub ''
Stevia Stevia () is a natural sweetener and sugar substitute derived from the leaves of the plant species ''Stevia rebaudiana'', native to Paraguay and Brazil. The active compounds are steviol glycosides (mainly stevioside and rebaudioside), which h ...
rebaudiana''. It is roughly 250 times sweeter than sucrose. Another class of potent natural sweeteners are the sweet proteins such as thaumatin, found in the West African katemfe fruit. Hen egg lysozyme, an
antibiotic An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of ...
protein found in chicken eggs, is also sweet. Some variation in values is not uncommon between various studies. Such variations may arise from a range of methodological variables, from sampling to analysis and interpretation. Indeed, the taste index of 1, assigned to reference substances such as sucrose (for sweetness), hydrochloric acid (for sourness), quinine (for bitterness), and sodium chloride (for saltiness), is itself arbitrary for practical purposes. Some values, such as those for maltose and glucose, vary little. Others, such as aspartame and sodium saccharin, have much larger variation. Even some
inorganic compound In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemist ...
s are sweet, including beryllium chloride and lead(II) acetate. The latter may have contributed to
lead poisoning Lead poisoning, also known as plumbism and saturnism, is a type of metal poisoning caused by lead in the body. The brain is the most sensitive. Symptoms may include abdominal pain, constipation, headaches, irritability, memory problems, inferti ...
among the
ancient Roman In modern historiography, ancient Rome refers to Roman civilisation from the founding of the city of Rome in the 8th century BC to the collapse of the Western Roman Empire in the 5th century AD. It encompasses the Roman Kingdom (753–509 BC ...
aristocracy: the Roman delicacy ''sapa'' was prepared by boiling soured wine (containing
acetic acid Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main component ...
) in lead pots. Hundreds of synthetic organic compounds are known to be sweet, but only a few of these are legally permitted as food additives. For example,
chloroform Chloroform, or trichloromethane, is an organic compound with chemical formula, formula Carbon, CHydrogen, HChlorine, Cl3 and a common organic solvent. It is a colorless, strong-smelling, dense liquid produced on a large scale as a precursor to ...
,
nitrobenzene Nitrobenzene is an organic compound with the chemical formula C6H5 NO2. It is a water-insoluble pale yellow oil with an almond-like odor. It freezes to give greenish-yellow crystals. It is produced on a large scale from benzene as a precursor t ...
, and ethylene glycol are sweet, but also toxic. Saccharin, cyclamate,
aspartame Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with the trade names ...
, acesulfame potassium,
sucralose Sucralose is an artificial sweetener and sugar substitute. The majority of ingested sucralose is not broken down by the body, so it is noncaloric. In the European Union, it is also known under the E number E955. It is produced by chlorination of ...
, alitame, and neotame are commonly used.


Sweetness modifiers

A few substances alter the way sweet taste is perceived. One class of these inhibits the perception of sweet tastes, whether from sugars or from highly potent sweeteners. Commercially, the most important of these is lactisole,Kinghorn, A.D. and Compadre, C.M. Alternative Sweeteners: Third Edition, Revised and Expanded, Marcel Dekker ed., New York, 2001. a compound produced by Domino Sugar. It is used in some jellies and other fruit preserves to bring out their fruit flavors by suppressing their otherwise strong sweetness. Two natural products have been documented to have similar sweetness-inhibiting properties: gymnemic acid, extracted from the leaves of the Indian vine '' Gymnema sylvestre'' and ziziphin, from the leaves of the Chinese jujube (''Ziziphus jujuba''). Gymnemic acid has been widely promoted within
herbal medicine Herbal medicine (also herbalism) is the study of pharmacognosy and the use of medicinal plants, which are a basis of traditional medicine. With worldwide research into pharmacology, some herbal medicines have been translated into modern remed ...
as a treatment for sugar cravings and diabetes mellitus. On the other hand, two plant proteins, miraculin and curculin, cause sour foods to taste sweet. Once the tongue has been exposed to either of these proteins, sourness is perceived as sweetness for up to an hour afterwards. While curculin has some innate sweet taste of its own, miraculin is by itself quite tasteless.


The sweetness receptor

Despite the wide variety of chemical substances known to be sweet, and knowledge that the ability to perceive sweet taste must reside in taste buds on the tongue, the biomolecular mechanism of sweet taste was sufficiently elusive that as recently as the 1990s, there was some doubt whether any single "sweetness receptor" actually exists. The breakthrough for the present understanding of sweetness occurred in 2001, when experiments with laboratory mice showed that mice possessing different versions of the gene T1R3 prefer sweet foods to different extents. Subsequent research has shown that the T1R3 protein forms a complex with a related protein, called
T1R2 Taste receptor type 1 member 2 is a protein that in humans is encoded by the ''TAS1R2'' gene. The sweet taste receptor is predominantly formed as a dimer of T1R2 and T1R3 by which different organisms sense this taste. In songbirds, however, the T1 ...
, to form a G-protein coupled receptor that is the sweetness receptor in mammals. Human studies have shown that sweet taste receptors are not only found in the tongue, but also in the lining of the gastrointestinal tract as well as the nasal epithelium, pancreatic islet cells, sperm and testes. It is proposed that the presence of sweet taste receptors in the GI tract controls the feeling of hunger and satiety. Another research has shown that the threshold of sweet taste perception is in direct correlation with the time of day. This is believed to be the consequence of oscillating
leptin Leptin (from Ancient Greek, Greek λεπτός ''leptos'', "thin" or "light" or "small") is a hormone predominantly made by adipose cells and enterocytes in the small intestine that helps to regulate Energy homeostasis, energy balance by inhib ...
levels in blood that may impact the overall sweetness of food. Scientists hypothesize that this is an evolutionary relict of diurnal animals like humans. Sweetness perception may differ between species significantly. For example, even amongst the primates sweetness is quite variable. New World monkeys do not find
aspartame Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with the trade names ...
sweet, while Old World monkeys and apes (including most humans) all do. Felids like
domestic cats The cat (''Felis catus'') is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae and is commonly referred to as the domestic cat or house cat to distinguish it from the wild members of t ...
cannot perceive sweetness at all. The ability to taste sweetness often atrophies genetically in species of carnivores who do not eat sweet foods like fruits, including
bottlenose dolphin Bottlenose dolphins are aquatic mammals in the genus ''Tursiops.'' They are common, cosmopolitan members of the family Delphinidae, the family of oceanic dolphins. Molecular studies show the genus definitively contains two species: the common ...
s, sea lions,
spotted hyena The spotted hyena (''Crocuta crocuta''), also known as the laughing hyena, is a hyena species, currently classed as the sole extant member of the genus ''Crocuta'', native to sub-Saharan Africa. It is listed as being of least concern by the IUC ...
s and
fossa Fossa may refer to: Animals * Fossa (animal), the common name of a carnivoran mammal of genus ''Cryptoprocta'' endemic to Madagascar * ''Fossa'', the Latin genus name of the Malagasy civet, a related but smaller mammal endemic to Madagascar Pla ...
s.


Sweet receptor pathway

To depolarize the cell, and ultimately generate a response, the body uses different cells in the taste bud that each express a receptor for the perception of sweet, sour, salty, bitter or umami. Downstream of the taste receptor, the taste cells for sweet, bitter and umami share the same intracellular signalling pathway. Incoming sweet molecules bind to their receptors, which causes a conformational change in the molecule. This change activates the G-protein, gustducin, which in turn activates
phospholipase C Phospholipase C (PLC) is a class of membrane-associated enzymes that cleave phospholipids just before the phosphate group (see figure). It is most commonly taken to be synonymous with the human forms of this enzyme, which play an important role ...
to generate inositol trisphosphate ( IP3), this subsequently opens the IP3-receptor and induces calcium release from the endoplasmic reticulum. This increase in intracellular calcium activates the
TRPM5 Transient receptor potential cation channel subfamily M member 5 (TRPM5), also known as long transient receptor potential channel 5 is a protein that in humans is encoded by the ''TRPM5'' gene. Function TRPM5 is a calcium-activated non-selecti ...
channel and induces cellular depolarization. The
ATP ATP may refer to: Companies and organizations * Association of Tennis Professionals, men's professional tennis governing body * American Technical Publishers, employee-owned publishing company * ', a Danish pension * Armenia Tree Project, non ...
release channel
CALHM1 Calcium homeostasis modulator 1 (CALHM1) is a pore-forming subunit of a voltage-gated ion channel and a voltage-gated ATP channel that in humans is encoded by the ''CALHM1'' gene. Function Central nervous system CALHM1 was identified by a ti ...
gets activated by the depolarization and releases ATP neurotransmitter which activates the afferent neurons innervating the taste bud.


Cognition

The color of food can affect sweetness perception. Adding more red color to a drink increases its perceived sweetness. In a study darker colored solutions were rated 2–10% higher than lighter ones despite having 1% less sucrose concentration. The effect of color is believed to be due to cognitive expectations. Some odors smell sweet and memory confuses whether sweetness was tasted or smelled.


Historical theories

The development of organic chemistry in the 19th century introduced many new chemical compounds and the means to determine their molecular structures. Early organic chemists tasted many of their products, either intentionally (as a means of characterization) or accidentally (due to poor laboratory hygiene). One of the first attempts to draw systematic correlations between molecules' structures and their tastes was made by a German chemist, Georg Cohn, in 1914. He hypothesized that to evoke a certain taste, a molecule must contain some structural motif (called a ''sapophore'') that produces that taste. With regard to sweetness, he noted that molecules containing multiple hydroxyl groups and those containing chlorine atoms are often sweet, and that among a series of structurally similar compounds, those with smaller molecular weights were often sweeter than the larger compounds. In 1919, Oertly and Myers proposed a more elaborate theory based on a then-current theory of color in synthetic
dye A dye is a colored substance that chemically bonds to the substrate to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution an ...
s. They hypothesized that to be sweet, a compound must contain one each of two classes of structural motif, a ''glucophore'' and an ''auxogluc''. Based on those compounds known to be sweet at the time, they proposed a list of six candidate glucophores and nine auxoglucs. From these beginnings in the early 20th century, the theory of sweetness enjoyed little further academic attention until 1963, when
Robert Shallenberger The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (''Hrōþiberhtaz''). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of '' Hruod'' ( non, Hróðr) "fame, glory, honou ...
and
Terry Acree Terry is a unisex given name, derived from French Thierry and Theodoric. It can also be used as a diminutive nickname for the names Teresa or Theresa (feminine) or Terence or Terrier (masculine). People Male * Terry Albritton (1955–2005), A ...
proposed the AH-B theory of sweetness. Simply put, they proposed that to be sweet, a compound must contain a
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
donor A donor in general is a person, organization or government which donates something voluntarily. The term is usually used to represent a form of pure altruism, but is sometimes used when the payment for a service is recognized by all parties as rep ...
(AH) and a
Lewis base A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
(B) separated by about 0.3
nanometre 330px, Different lengths as in respect to the molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re ...
s. According to this theory, the AH-B unit of a sweetener binds with a corresponding AH-B unit on the biological sweetness receptor to produce the sensation of sweetness. B-X theory proposed by Lemont Kier in 1972. While previous researchers had noted that among some groups of compounds, there seemed to be a correlation between hydrophobicity and sweetness, this theory formalized these observations by proposing that to be sweet, a compound must have a third binding site (labeled X) that could interact with a hydrophobic site on the sweetness receptor via London dispersion forces. Later researchers have statistically analyzed the distances between the presumed AH, B, and X sites in several families of sweet substances to estimate the distances between these interaction sites on the sweetness receptor.


MPA theory

The most elaborate theory of sweetness to date is the multipoint attachment theory (MPA) proposed by
Jean-Marie Tinti Jean-Marie is both a given name and a surname. Notable people with the name include: * Jean-Marie Abgrall (born 1950), a French psychiatrist, criminologist, specialist in forensic medicine, cult expert, and graduate in criminal law * Jean-Marie C ...
and
Claude Nofre Claude may refer to: __NOTOC__ People and fictional characters * Claude (given name), a list of people and fictional characters * Claude (surname), a list of people * Claude Lorrain (c. 1600–1682), French landscape painter, draughtsman and etcher ...
in 1991. This theory involves a total of eight interaction sites between a sweetener and the sweetness receptor, although not all sweeteners interact with all eight sites. This model has successfully directed efforts aimed at finding highly potent sweeteners, including the most potent family of sweeteners known to date, the guanidine sweeteners. The most potent of these, lugduname, is about 225,000 times sweeter than sucrose.


References


Cited


General

* * * * * * * * * * * * * * * *


Further reading

* * {{Authority control Gustation Culinary terminology