HOME

TheInfoList



OR:

A subdwarf, sometimes denoted by "sd", is a star with
luminosity class In astronomy, stellar classification is the classification of stars based on their stellar spectrum, spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a Prism (optics), prism or diffraction gratin ...
 VI under the Yerkes spectral classification system. They are defined as
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s with
luminosity Luminosity is an absolute measure of radiated electromagnetic radiation, electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electroma ...
 1.5 to 2 magnitudes lower than that of main-sequence stars of the same spectral type. On a Hertzsprung–Russell diagram subdwarfs appear to lie below the
main sequence In astronomy, the main sequence is a classification of stars which appear on plots of stellar color index, color versus absolute magnitude, brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or d ...
. The term "subdwarf" was coined by Gerard Kuiper in 1939, to refer to a series of stars with anomalous spectra that were previously labeled as "intermediate white dwarfs". Since Kuiper coined the term, the subdwarf type has been extended to lower-mass stars than were known at the time. Astronomers have also discovered an entirely different group of blue-white subdwarfs, making two distinct categories: * Cool subdwarfs * Hot subdwarfs


Cool (red) subdwarfs

Like ordinary main-sequence stars, cool subdwarfs (of spectral types G to M) produce their energy from
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
fusion. The explanation of their underluminosity lies in their low
metallicity In astronomy, metallicity is the Abundance of the chemical elements, abundance of Chemical element, elements present in an object that are heavier than hydrogen and helium. Most of the normal currently detectable (i.e. non-Dark matter, dark) matt ...
: These stars are not enriched in elements heavier than
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
. The lower metallicity decreases the opacity of their outer layers and decreases the radiation pressure, resulting in a smaller, hotter star for a given mass. This lower opacity also allows them to emit a higher percentage of
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
light for the same spectral type relative to a Population I star, a feature known as the ultraviolet excess. Usually members of the Milky Way's halo, they frequently have high space velocities relative to the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
. Cool subdwarfs of spectral type L and T exist, for example ULAS J131610.28+075553.0 with spectral type sdT6.5. Subclasses of cool subdwarfs are as following: ; cool subdwarf: Examples: Kapteyn's Star (sdM1), GJ 1062 (sdM2.5) ; extreme subdwarf: Example: APMPM J0559-2903 (esdM7) ; ultrasubdwarf: Example: LSPM J0822+1700 (usdM7.5)


Subdwarfs of type L, T and Y

The low
metallicity In astronomy, metallicity is the Abundance of the chemical elements, abundance of Chemical element, elements present in an object that are heavier than hydrogen and helium. Most of the normal currently detectable (i.e. non-Dark matter, dark) matt ...
of subdwarfs is coupled with their old age. The early universe had a low content of elements heavier than helium and formed stars and
brown dwarfs Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main-sequence stars. Their mass is approximately 13 to 80 times that of Jupiter ()not big enough to sustain nuclear fu ...
with lower metallicity. Only later
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
e,
planetary nebula A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives. The term "planetary nebula" is a misnomer because they are unrelated to planets. The ...
e and
neutron star merger A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually inspiral, spiral inward due to the loss of energy emitted as gravitational radiation. When they finally meet, their me ...
s enriched the universe with heavier elements. The old subdwarfs belong therefore often to the older structures in our Milky Way, mainly the thick disk and the galactic halo. Objects in the thick disk or the halo have a high space velocity compared to the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
, which belongs to the younger thin disk. A high
proper motion Proper motion is the astrometric measure of changes in the apparent places of stars or other celestial objects as they move relative to the center of mass of the Solar System. It is measured relative to the distant stars or a stable referenc ...
can be used to discover subdwarfs. Additionally the subdwarfs have spectral features that make them different from subdwarfs with solar metallicity. All subdwarfs share the suppression of the near-infrared spectrum, mainly the H-band and K-band. The low metallicity increase the collision induced absorption of
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
, causing this suppressed near-infrared spectrum. This is seen as blue infrared colors compared to brown dwarfs with solar metallicity. The low metallicity also change other absorption features, such as deeper CaH and TiO bands at 0.7 μm in L-subdwarfs, a weaker VO band at 0.8 μm in early L-subdwarfs and stronger FeH band at 0.99 μm for mid- to late L-subdwarfs. 2MASS J0532+8246 was discovered in 2003 as the first L-type subdwarf, which was later re-classified as an extreme subdwarf. The L-type subdwarfs have subtypes similar to M-type subdwarfs: The subtypes subdwarf (sd), extreme subdwarfs (esd) and ultra subdwarfs (usd), which are defined by their decreasing
metallicity In astronomy, metallicity is the Abundance of the chemical elements, abundance of Chemical element, elements present in an object that are heavier than hydrogen and helium. Most of the normal currently detectable (i.e. non-Dark matter, dark) matt ...
, compared to solar metallicity, which is defined on a
logarithmic scale A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences among the magnitudes of the numbers involved. Unlike a linear Scale (measurement) ...
: * subdwarfs have \ -1.0 < \bigl \tfrac \bigr\star \leq -0.3\ , * extreme subdwarfs have \ -1.7 < \bigl \tfrac \bigr\star \leq -1.0\ , and * ultra subdwarfs have \ \bigl \tfrac \bigr\star \leq -1.7 ~. * The
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
sets the scale at \ \bigl \tfrac \bigr\odot \equiv 0\ , by definition. For T-type subdwarfs only a small sample of subdwarfs and extreme subdwarfs is known. 2MASSI J0937347+293142 is the first object that was discovered in 2002 as a T-type subdwarf candidate and in 2006 it was confirmed to have low metallicity. The first two extreme subdwarfs of type T were discovered in 2020 by scientists and volunteers of the Backyard Worlds project. The first extreme subdwarfs of type T are WISEA 0414−5854 and WISEA 1810−1010. Subdwarfs of type T and Y have less
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
in their atmosphere, due to the lower concentration of
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
in these subdwarfs. This leads to a bluer W1-W2 ( WISE) or ch1-ch2 ( Spitzer) color, compared to objects with similar temperature, but with solar metallicity. The color of T-types as a single classification criterion can be misleading. The closest directly imaged exoplanet, COCONUTS-2b, was first classified as a subdwarf of type T due to its color, while not showing a high tangential velocity. Only in 2021 it was identified as an exoplanet. The first Y-type subdwarf candidate was discovered in 2021, the brown dwarf WISE 1534–1043, which shows a moderate red Spitzer Space Telescope color (ch1-ch2 = 0.925±0.039 mag). The very red color between J and ch2 (J-ch2 > 8.03 mag) and the absolute brightness would suggest a much redder ch1-ch2 color of about 2.4 to 3 mag. Due to the agreement with new subdwarf models, together with the high tangential velocity of 200 km/s, Kirkpatrick, Marocco ''et al''. (2021) argue that the most likely explanation is a cold very low-metal brown dwarf, maybe the first subdwarf of type Y. Binaries can help to determine the age and mass of these subdwarfs. The subdwarf VVV 1256−62B (sdL3) was discovered as a companion to a halo
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
, allowing the age to be measured at 8.4 to 13.8 billion years. It has a mass of 84 to 87 , making VVV 1256−62B likely a
red dwarf A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of fusing star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs are ...
star. The subdwarf Wolf 1130C (sdT8) is the companion of an old subdwarf-white dwarf binary, which is estimated to be older than 10 billion years. It has a mass of 44.9 , making it a brown dwarf.


Examples of cool subdwarfs

* Kapteyn's Star * Groombridge 1830 * Mu Cassiopeiae * 2MASS J05325346+8246465, a possible halo
brown dwarf Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main sequence, main-sequence stars. Their mass is approximately 13 to 80 Jupiter mass, times that of Jupiter ()not big en ...
and the first substellar subdwarf. * SSSPM J1549-3544


Hot (blue) subdwarfs

Hot subdwarfs, of bluish spectral types O and B are an entirely different class of object than cool subdwarfs; they are also called ''"extreme horizontal-branch stars"''. Hot subdwarf stars represent a late stage in the evolution of some stars, caused when a red giant star loses its outer
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
layers before the core begins to fuse
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
. The reasons for their premature loss of their hydrogen envelope are unclear, but the interaction of stars in a
binary star A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars us ...
system is thought to be one of the main mechanisms. Single subdwarfs may be the result of a merger of two
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
s or gravitational influence from substellar companions. B-type subdwarfs, being more luminous than white dwarfs, are a significant component in the hot star population of old stellar systems, such as
globular cluster A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards its center. It can contain anywhere from tens of thousands to many millions of member stars, all orbiting ...
s and elliptical galaxies.


Heavy metal subdwarfs

The heavy metal subdwarfs are a type of hot subdwarf star with high concentrations of
heavy metals upright=1.2, Crystals of lead.html" ;"title="osmium, a heavy metal nearly twice as dense as lead">osmium, a heavy metal nearly twice as dense as lead Heavy metals is a controversial and ambiguous term for metallic elements with relatively h ...
. The metals detected include
germanium Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
,
strontium Strontium is a chemical element; it has symbol Sr and atomic number 38. An alkaline earth metal, it is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to ...
,
yttrium Yttrium is a chemical element; it has Symbol (chemistry), symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost a ...
, zirconium and
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
. Known heavy metal subdwarfs include HE 2359-2844, LS IV-14 116, and HE 1256-2738.


Footnotes


References

{{Star Star types