Stratospheric Particle Injection For Climate Engineering
   HOME

TheInfoList



OR:

The stratosphere () is the second layer of the atmosphere of the Earth, located above the troposphere and below the
mesosphere The mesosphere (; ) is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define its limits: it ...
. The stratosphere is an atmospheric layer composed of
stratified Stratification may refer to: Mathematics * Stratification (mathematics), any consistent assignment of numbers to predicate symbols * Data stratification in statistics Earth sciences * Stable and unstable stratification * Stratification, or st ...
temperature layers, with the warm layers of air high in the sky and the cool layers of air in the low sky, close to the planetary surface of the Earth. The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the
ozone layer The ozone layer or ozone shield is a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet radiation. It contains a high concentration of ozone (O3) in relation to other parts of the atmosphere, although still small in rela ...
. The temperature inversion is in contrast to the troposphere, near the Earth's surface, where temperature decreases with altitude. Between the troposphere and stratosphere is the tropopause border that demarcates the beginning of the temperature inversion. Near the equator, the lower edge of the stratosphere is as high as , at midlatitudes around , and at the
poles Poles,, ; singular masculine: ''Polak'', singular feminine: ''Polka'' or Polish people, are a West Slavic nation and ethnic group, who share a common history, culture, the Polish language and are identified with the country of Poland in Ce ...
about . Temperatures range from an average of near the tropopause to an average of near the mesosphere. Stratospheric temperatures also vary within the stratosphere as the seasons change, reaching particularly low temperatures in the polar night (winter). Winds in the stratosphere can far exceed those in the troposphere, reaching near in the Southern polar vortex.


Ozone layer

The mechanism describing the formation of the ozone layer was described by British mathematician Sydney Chapman in 1930. Molecular oxygen absorbs high energy sunlight in the UV-C region, at wavelengths shorter than about 240 nm. Radicals produced from the homolytically split oxygen molecules combine with molecular oxygen to form ozone. Ozone in turn is photolysed much more rapidly than molecular oxygen as it has a stronger absorption that occurs at longer wavelengths, where the solar emission is more intense. Ozone (O3) photolysis produces O and O2. The oxygen atom product combines with atmospheric molecular oxygen to reform O3, releasing heat. The rapid photolysis and reformation of ozone heat the stratosphere, resulting in a temperature inversion. This increase of temperature with altitude is characteristic of the stratosphere; its resistance to vertical mixing means that it is stratified. Within the stratosphere temperatures increase with altitude ''(see temperature inversion)''; the top of the stratosphere has a temperature of about 270 K (−3
°C The degree Celsius is the unit of temperature on the Celsius scale (originally known as the centigrade scale outside Sweden), one of two temperature scales used in the International System of Units (SI), the other being the Kelvin scale. The ...
or 26.6
°F The Fahrenheit scale () is a temperature scale based on one proposed in 1724 by the physicist Daniel Gabriel Fahrenheit (1686–1736). It uses the degree Fahrenheit (symbol: °F) as the unit. Several accounts of how he originally defined his ...
). This vertical stratification, with warmer layers above and cooler layers below, makes the stratosphere dynamically stable: there is no regular convection and associated turbulence in this part of the atmosphere. However, exceptionally energetic convection processes, such as volcanic eruption columns and overshooting tops in severe supercell thunderstorms, may carry convection into the stratosphere on a very local and temporary basis. Overall, the attenuation of solar UV at wavelengths that damage DNA by the ozone layer allows life to exist on the surface of the planet outside of the ocean. All air entering the stratosphere must pass through the tropopause, the temperature minimum that divides the troposphere and stratosphere. The rising air is literally freeze dried; the stratosphere is a very dry place. The top of the stratosphere is called the stratopause, above which the temperature decreases with height.


Formation

Sydney Chapman gave a correct description of the source of stratospheric ozone and its ability to generate heat within the stratosphere; he also wrote that ozone may be destroyed by reacting with atomic oxygen, making two molecules of molecular oxygen. We now know that there are additional ozone loss mechanisms and that these mechanisms are catalytic meaning that a small amount of the catalyst can destroy a great number of ozone molecules. The first is due to the reaction of hydroxyl radicals (•OH) with ozone. •OH is formed by the reaction of electrically excited oxygen atoms produced by ozone photolysis, with water vapor. While the stratosphere is dry, additional water vapor is produced in situ by the photochemical oxidation of methane (CH4). The HO2 radical produced by the reaction of OH with O3 is recycled to OH by reaction with oxygen atoms or ozone. In addition, solar proton events can significantly affect ozone levels via
radiolysis Radiolysis is the dissociation of molecules by ionizing radiation. It is the cleavage of one or several chemical bonds resulting from exposure to high-energy flux. The radiation in this context is associated with ionizing radiation; radiolysis is ...
with the subsequent formation of OH. Nitrous oxide (N2O) is produced by biological activity at the surface and is oxidised to NO in the stratosphere; the so-called NOx radical cycles also deplete stratospheric ozone. Finally, chlorofluorocarbon molecules are photolysed in the stratosphere releasing chlorine atoms that react with ozone giving ClO and O2. The chlorine atoms are recycled when ClO reacts with O in the upper stratosphere, or when ClO reacts with itself in the chemistry of the Antarctic ozone hole. Paul J. Crutzen, Mario J. Molina and F. Sherwood Rowland were awarded the Nobel Prize in Chemistry in 1995 for their work describing the formation and decomposition of stratospheric ozone.


Aircraft flight

Commercial
airliner An airliner is a type of aircraft for transporting passengers and air cargo. Such aircraft are most often operated by airlines. Although the definition of an airliner can vary from country to country, an airliner is typically defined as an ...
s typically cruise at altitudes of which is in the lower reaches of the stratosphere in temperate latitudes. This optimizes
fuel efficiency Fuel efficiency is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical potential energy contained in a carrier (fuel) into kinetic energy or work. Overall fuel efficiency may vary per device, wh ...
, mostly due to the low temperatures encountered near the tropopause and low air density, reducing parasitic drag on the
airframe The mechanical structure of an aircraft is known as the airframe. This structure is typically considered to include the fuselage, undercarriage, empennage and wings, and excludes the propulsion system. Airframe design is a field of aerospa ...
. Stated another way, it allows the airliner to fly faster while maintaining lift equal to the weight of the plane. (The fuel consumption depends on the drag, which is related to the lift by the lift-to-drag ratio.) It also allows the airplane to stay above the turbulent weather of the troposphere. The Concorde aircraft cruised at Mach 2 at about , and the
SR-71 The Lockheed SR-71 "Blackbird" is a Range (aeronautics), long-range, high-altitude, Mach number, Mach 3+ military strategy, strategic reconnaissance aircraft developed and manufactured by the American aerospace company Lockheed Corporati ...
cruised at Mach 3 at , all within the stratosphere. Because the temperature in the tropopause and lower stratosphere is largely constant with increasing altitude, very little convection and its resultant turbulence occurs there. Most turbulence at this altitude is caused by variations in the
jet stream Jet streams are fast flowing, narrow, meandering thermal wind, air currents in the Atmosphere of Earth, atmospheres of some planets, including Earth. On Earth, the main jet streams are located near the altitude of the tropopause and are west ...
and other local wind shears, although areas of significant convective activity ( thunderstorms) in the troposphere below may produce turbulence as a result of
convective overshoot Convective overshoot is a phenomenon of convection carrying material beyond an unstable region of the atmosphere into a stratified, stable region. Overshoot is caused by the momentum of the convecting material, which carries the material beyond th ...
. On October 24, 2014, Alan Eustace became the record holder for reaching the altitude record for a manned balloon at . Eustace also broke the world records for vertical speed skydiving, reached with a peak velocity of 1,321 km/h (822 mph) and total freefall distance of – lasting four minutes and 27 seconds.


Circulation and mixing

The stratosphere is a region of intense interactions among radiative,
dynamical In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a ...
, and chemical processes, in which the horizontal mixing of gaseous components proceeds much more rapidly than does vertical mixing. The overall circulation of the stratosphere is termed as Brewer-Dobson circulation, which is a single-celled circulation, spanning from the tropics up to the poles, consisting of the tropical upwelling of air from the tropical troposphere and the extra-tropical downwelling of air. Stratospheric circulation is a predominantly wave-driven circulation in that the tropical upwelling is induced by the wave force by the westward propagating Rossby waves, in a phenomenon called Rossby-wave pumping. An interesting feature of stratospheric circulation is the quasi-biennial oscillation (QBO) in the tropical latitudes, which is driven by
gravity wave In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere ...
s that are convectively generated in the troposphere. The QBO induces a secondary circulation that is important for the global stratospheric transport of tracers, such as ozone or water vapor. Another large-scale feature that significantly influences stratospheric circulation is the breaking planetary waves resulting in intense quasi-horizontal mixing in the midlatitudes. This breaking is much more pronounced in the winter hemisphere where this region is called the surf zone. This breaking is caused due to a highly non-linear interaction between the vertically propagating planetary waves and the isolated high
potential vorticity In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It i ...
region known as the polar vortex. The resultant breaking causes large-scale mixing of air and other trace gases throughout the midlatitude surf zone. The timescale of this rapid mixing is much smaller than the much slower timescales of upwelling in the tropics and downwelling in the extratropics. During northern hemispheric winters,
sudden stratospheric warmings A sudden stratospheric warming (SSW) is an event in which the polar stratospheric temperature rises by several tens of kelvins (up to increases of about 50 Â°C (90 Â°F)) over the course of a few days. The warming is preceded by a slowin ...
, caused by the absorption of Rossby waves in the stratosphere, can be observed in approximately half of winters when easterly winds develop in the stratosphere. These events often precede unusual winter weather and may even be responsible for the cold European winters of the 1960s. Stratospheric warming of the polar vortex results in its weakening. When the vortex is strong, it keeps the cold, high-pressure air masses ''contained'' in the Arctic; when the vortex weakens, air masses move equatorward, and results in rapid changes of weather in the mid latitudes.


Life


Bacteria

Bacterial life survives in the stratosphere, making it a part of the biosphere. In 2001, dust was collected at a height of 41 kilometres in a high-altitude balloon experiment and was found to contain bacterial material when examined later in the laboratory.


Birds

Some bird species have been reported to fly at the upper levels of the troposphere. On November 29, 1973, a Rüppell's vulture (''Gyps rueppelli'') was ingested into a jet engine above the
Ivory Coast Ivory Coast, also known as Côte d'Ivoire, officially the Republic of Côte d'Ivoire, is a country on the southern coast of West Africa. Its capital is Yamoussoukro, in the centre of the country, while its largest city and economic centre is ...
, and
bar-headed geese The bar-headed goose (''Anser indicus'') is a goose that breeds in Central Asia in colonies of thousands near mountain lakes and winters in South Asia, as far south as peninsular India. It lays three to eight eggs at a time in a ground nest. It ...
(''Anser indicus'') reportedly overflew Mount Everest's summit, which is .


Discovery

In 1902, Léon Teisserenc de Bort from France and
Richard Assmann Richard Assmann (Anglicized spelling of the German name Richard Aßmann) (13 April 1845 in Magdeburg – 28 May 1918 in Gießen) was a German meteorologist and physician who was a native of Magdeburg. He made numerous contributions in high altitud ...
from Germany, in separate but coordinated publications and following years of observations, published the discovery of an isothermal layer at around 11–14 km, which is the base of the lower stratosphere. This was based on temperature profiles from mostly unmanned and a few manned instrumented balloons.


See also

*
Le Grand Saut Michel Fournier (born 9 May 1944) is a French adventurer and retired Air Force colonel. He has been involved in planning attempts to break freefall jumping height records, but has yet to be successful in carrying out an attempt. He was born in Tr ...
* Lockheed U-2 * Overshooting top *
Ozone depletion Ozone depletion consists of two related events observed since the late 1970s: a steady lowering of about four percent in the total amount of ozone in Earth's atmosphere, and a much larger springtime decrease in stratospheric ozone (the ozone l ...
*
Paris Gun The Paris Gun (german: Paris-Geschütz / Pariser Kanone) was the name given to a type of German long-range siege gun, several of which were used to bombard Paris during World War I. They were in service from March to August 1918. When the guns w ...
(projectile was the first artificial object to reach stratosphere) *
Perlan Project Perlan Project Inc. is a 501(c)(3) not-for-profit aeronautical exploration and atmospheric science research organization that utilizes Glider (sailplane), sailplanes (gliders) designed to fly at extremely high altitudes. On 29 August 2006 Steve ...
* Project Excelsior, world record for highest recorded jump * Red Bull Stratos * RQ-4 Global Hawk *
Service ceiling With respect to aircraft performance, a ceiling is the maximum density altitude an aircraft can reach under a set of conditions, as determined by its flight envelope. Service ceiling Service ceiling is where the rate of climb drops below a pres ...
*
Upper-atmospheric lightning Upper-atmospheric lightning and ionospheric lightning are terms sometimes used by researchers to refer to a family of short-lived electrical-breakdown phenomena that occur well above the altitudes of normal lightning and storm clouds. Upper-atmo ...


References


External links


Current map of global winds and temperatures at the 10 hPa level.
{{Authority control Atmosphere Atmosphere of Earth Meteorological phenomena