Stochastic control or stochastic
optimal control is a sub field of
control theory
Control theory is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a ...
that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a
Bayesian probability
Bayesian probability is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification ...
-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise. The context may be either
discrete time or
continuous time
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled.
Discrete time
Discrete time views values of variables as occurring at distinct, separate "po ...
.
Certainty equivalence
An extremely well-studied formulation in stochastic control is that of
linear quadratic Gaussian control. Here the model is linear, the objective function is the expected value of a quadratic form, and the disturbances are purely additive. A basic result for discrete-time centralized systems with only additive uncertainty is the certainty equivalence property:
that the optimal control solution in this case is the same as would be obtained in the absence of the additive disturbances. This property is applicable to all centralized systems with linear equations of evolution, quadratic cost function, and noise entering the model only additively; the quadratic assumption allows for the optimal control laws, which follow the certainty-equivalence property, to be linear functions of the observations of the controllers.
Any deviation from the above assumptions—a nonlinear state equation, a non-quadratic objective function,
noise in the multiplicative parameters of the model, or decentralization of control—causes the certainty equivalence property not to hold. For example, its failure to hold for decentralized control was demonstrated in
Witsenhausen's counterexample Witsenhausen's counterexample, shown in the figure below, is a deceptively simple toy problem in decentralized stochastic control. It was formulated by Hans Witsenhausen in 1968. It is a counterexample to a natural conjecture that one can genera ...
.
Discrete time
In a discrete-time context, the decision-maker observes the state variable, possibly with observational noise, in each time period. The objective may be to optimize the sum of expected values of a nonlinear (possibly quadratic) objective function over all the time periods from the present to the final period of concern, or to optimize the value of the objective function as of the final period only. At each time period new observations are made, and the control variables are to be adjusted optimally. Finding the optimal solution for the present time may involve iterating a
matrix Riccati equation backwards in time from the last period to the present period.
In the discrete-time case with uncertainty about the parameter values in the transition matrix (giving the effect of current values of the state variables on their own evolution) and/or the control response matrix of the state equation, but still with a linear state equation and quadratic objective function, a Riccati equation can still be obtained for iterating backward to each period's solution even though certainty equivalence does not apply.
ch.13 The discrete-time case of a non-quadratic loss function but only additive disturbances can also be handled, albeit with more complications.
Example
A typical specification of the discrete-time stochastic linear quadratic control problem is to minimize
[
:]