Multiplier Uncertainty
   HOME
*





Multiplier Uncertainty
In macroeconomics, multiplier uncertainty is lack of perfect knowledge of the multiplier effect of a particular policy action, such as a monetary or fiscal policy change, upon the intended target of the policy. For example, a fiscal policy maker may have a prediction as to the value of the fiscal multiplier—the ratio of the effect of a government spending change on GDP to the size of the government spending change—but is not likely to know the exact value of this ratio. Similar uncertainty may surround the magnitude of effect of a change in the monetary base or its growth rate upon some target variable, which could be the money supply, the exchange rate, the inflation rate, or GDP. There are several policy implications of multiplier uncertainty: (1) If the multiplier uncertainty is uncorrelated with additive uncertainty, its presence causes greater cautiousness to be optimal (the policy tools should be used to a lesser extent). (2) In the presence of multiplier uncertainty, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Macroeconomics
Macroeconomics (from the Greek prefix ''makro-'' meaning "large" + ''economics'') is a branch of economics dealing with performance, structure, behavior, and decision-making of an economy as a whole. For example, using interest rates, taxes, and government spending to regulate an economy's growth and stability. This includes regional, national, and global economies. According to a 2018 assessment by economists Emi Nakamura and Jón Steinsson, economic "evidence regarding the consequences of different macroeconomic policies is still highly imperfect and open to serious criticism." Macroeconomists study topics such as Gross domestic product, GDP (Gross Domestic Product), unemployment (including Unemployment#Measurement, unemployment rates), national income, price index, price indices, output (economics), output, Consumption (economics), consumption, inflation, saving, investment (macroeconomics), investment, Energy economics, energy, international trade, and international finance. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loss Function
In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function. An objective function is either a loss function or its opposite (in specific domains, variously called a reward function, a profit function, a utility function, a fitness function, etc.), in which case it is to be maximized. The loss function could include terms from several levels of the hierarchy. In statistics, typically a loss function is used for parameter estimation, and the event in question is some function of the difference between estimated and true values for an instance of data. The concept, as old as Laplace, was reintroduced in statistics by Abraham Wald in the middle of the 20th century. In the context of economics, for example, this i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Review Of Economic Studies
''The Review of Economic Studies'' (also known as ''REStud'') is a quarterly peer-reviewed academic journal covering economics. It was established in 1933 by a group of economists based in Britain and the United States. The original editorial team consisted of Abba P. Lerner, Paul Sweezy, and Ursula Kathleen Hicks. It is published by Oxford University Press. The journal is widely considered one of the top 5 journals in economics. It is managed by the editorial board currently chaired by Nicola Fuchs-Schündeln (Goethe University Frankfurt). The current joint managing editors are Thomas Chaney (Sciences Po), Andrea Galeotti (London Business School), Nicola Gennaioli (Bocconi University), Veronica Guerrieri (University of Chicago), Kurt Mitman (Institute for International Economic Studies, Stockholm University), Francesca Molinari (Cornell University), Uta Schönberg (University College London), and Adam Szeidl (Central European University). According to the ''Journal Citation Repor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Control
Stochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise. The context may be either discrete time or continuous time. Certainty equivalence An extremely well-studied formulation in stochastic control is that of linear quadratic Gaussian control. Here the model is linear, the objective function is the expected value of a quadratic form, and the disturbances are purely additive. A basic result for discrete-time centralized systems with only additive uncertainty is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mutual Fund Theorem
In portfolio theory, a mutual fund separation theorem, mutual fund theorem, or separation theorem is a theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ... stating that, under certain conditions, any investor's optimal portfolio can be constructed by holding each of certain mutual funds in appropriate ratios, where the number of mutual funds is smaller than the number of individual assets in the portfolio. Here a mutual fund refers to any specified benchmark portfolio of the available assets. There are two advantages of having a mutual fund theorem. First, if the relevant conditions are met, it may be easier (or lower in transactions costs) for an investor to purchase a smaller number of mutual funds than to purchase a larger number of assets individually. Second, from a theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modern Portfolio Theory
Modern portfolio theory (MPT), or mean-variance analysis, is a mathematical framework for assembling a portfolio of assets such that the expected return is maximized for a given level of risk. It is a formalization and extension of diversification in investing, the idea that owning different kinds of financial assets is less risky than owning only one type. Its key insight is that an asset's risk and return should not be assessed by itself, but by how it contributes to a portfolio's overall risk and return. It uses the variance of asset prices as a proxy for risk. Economist Harry Markowitz introduced MPT in a 1952 essay, for which he was later awarded a Nobel Memorial Prize in Economic Sciences; see Markowitz model. Mathematical model Risk and expected return MPT assumes that investors are risk averse, meaning that given two portfolios that offer the same expected return, investors will prefer the less risky one. Thus, an investor will take on increased risk only if compensat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Loss Function
In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function. An objective function is either a loss function or its opposite (in specific domains, variously called a reward function, a profit function, a utility function, a fitness function, etc.), in which case it is to be maximized. The loss function could include terms from several levels of the hierarchy. In statistics, typically a loss function is used for parameter estimation, and the event in question is some function of the difference between estimated and true values for an instance of data. The concept, as old as Laplace, was reintroduced in statistics by Abraham Wald in the middle of the 20th century. In the context of economics, for example, this is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Economic Review
The ''American Economic Review'' is a monthly peer-reviewed academic journal published by the American Economic Association. First published in 1911, it is considered one of the most prestigious and highly distinguished journals in the field of economics. The current editor-in-chief is Esther Duflo, an economic professor at the Massachusetts Institute of Technology. The journal is based in Pittsburgh. In 2004, the ''American Economic Review'' began requiring "data and code sufficient to permit replication" of a paper's results, which is then posted on the journal's website. Exceptions are made for proprietary data. Until 2017, the May issue of the ''American Economic Review'', titled the ''Papers and Proceedings'' issue, featured the papers presented at the American Economic Association's annual meeting that January. After being selected for presentation, the papers in the ''Papers and Proceedings'' issue did not undergo a formal process of peer review. Starting in 2018, papers pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expected Value Of Including Uncertainty
In decision theory and quantitative policy analysis, the expected value of including uncertainty (EVIU) is the expected difference in the value of a decision based on a probabilistic analysis versus a decision based on an analysis that ignores uncertainty. Background Decisions must be made every day in the ubiquitous presence of uncertainty. For most day-to-day decisions, various heuristics are used to act reasonably in the presence of uncertainty, often with little thought about its presence. However, for larger high-stakes decisions or decisions in highly public situations, decision makers may often benefit from a more systematic treatment of their decision problem, such as through quantitative analysis or decision analysis. When building a quantitative decision model, a model builder identifies various relevant factors, and encodes these as ''input variables''. From these inputs, other quantities, called ''result variables'', can be computed; these provide information for t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Certainty Equivalence Principle
Stochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise. The context may be either discrete time or continuous time. Certainty equivalence An extremely well-studied formulation in stochastic control is that of linear quadratic Gaussian control. Here the model is linear, the objective function is the expected value of a quadratic form, and the disturbances are purely additive. A basic result for discrete-time centralized systems with only additive uncertainty is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplier (economics)
In macroeconomics, a multiplier is a factor of proportionality that measures how much an endogenous variable changes in response to a change in some exogenous variable. For example, suppose variable ''x'' changes by ''k'' units, which causes another variable ''y'' to change by ''M'' × ''k'' units. Then the multiplier is ''M''. Common uses Two multipliers are commonly discussed in introductory macroeconomics. Commercial banks create money, especially under the fractional-reserve banking system used throughout the world. In this system, money is created whenever a bank gives out a new loan. This is because the loan, when drawn on and spent, mostly finishes up as a deposit back in the banking system and is counted as part of money supply. After putting aside a part of these deposits as mandated bank reserves, the balance is available for the making of further loans by the bank. This process continues multiple times, and is called the multiplier effect. The multiplier may v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Correlation
In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are ''linearly'' related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the so-called demand curve. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling. However ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]