HOME

TheInfoList



OR:

In
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, a square is a
regular The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instrum ...
quadrilateral, which means that it has four equal sides and four equal
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
s (90-
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathemati ...
angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ''ABCD'' would be denoted .


Characterizations

A convex quadrilateral is a square
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bi ...
it is any one of the following: * A rectangle with two adjacent equal sides * A
rhombus In plane Euclidean geometry, a rhombus (plural rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. Th ...
with a right vertex angle * A
rhombus In plane Euclidean geometry, a rhombus (plural rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. Th ...
with all angles equal * A parallelogram with one right vertex angle and two adjacent equal sides * A quadrilateral with four equal sides and four right angles * A quadrilateral where the diagonals are equal, and are the perpendicular bisectors of each other (i.e., a rhombus with equal diagonals) * A convex quadrilateral with successive sides ''a'', ''b'', ''c'', ''d'' whose area is A= \tfrac(a^2+c^2)=\tfrac(b^2+d^2).Josefsson, Martin
"Properties of equidiagonal quadrilaterals"
''Forum Geometricorum'', 14 (2014), 129-144.


Properties

A square is a special case of a
rhombus In plane Euclidean geometry, a rhombus (plural rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. Th ...
(equal sides, opposite equal angles), a
kite A kite is a tethered heavier than air flight, heavier-than-air or lighter-than-air craft with wing surfaces that react against the air to create Lift (force), lift and Drag (physics), drag forces. A kite consists of wings, tethers and anchors. ...
(two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all the properties of all these shapes, namely: * All four internal angles of a square are equal (each being 360°/4 = 90°, a right angle). * The central angle of a square is equal to 90° (360°/4). * The external angle of a square is equal to 90°. * The diagonals of a square are equal and
bisect Bisect, or similar, may refer to: Mathematics * Bisection, in geometry, dividing something into two equal parts * Bisection method, a root-finding algorithm * Equidistant set Other uses * Bisect (philately), the use of postage stamp halves * Bis ...
each other, meeting at 90°. * The diagonal of a square bisects its internal angle, forming adjacent angles of 45°. * All four sides of a square are equal. * Opposite sides of a square are parallel. * The square is the n=2 case of the families of n- hypercubes and n- orthoplexes. * A square has Schläfli symbol . A truncated square, t, is an octagon, . An alternated square, h, is a digon, .


Perimeter and area

The perimeter of a square whose four sides have length \ell is :P=4\ell and the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
''A'' is :A=\ell^2. Since four squared equals sixteen, a four by four square has an area equal to its perimeter. The only other quadrilateral with such a property is that of a three by six rectangle. In classical times, the second power was described in terms of the area of a square, as in the above formula. This led to the use of the term ''
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
'' to mean raising to the second power. The area can also be calculated using the diagonal ''d'' according to :A=\frac. In terms of the circumradius ''R'', the area of a square is :A=2R^2; since the area of the circle is \pi R^2, the square fills 2/\pi \approx 0.6366 of its circumscribed circle. In terms of the inradius ''r'', the area of the square is :A=4r^2; hence the area of the inscribed circle is \pi/4 \approx 0.7854 of that of the square. Because it is a regular polygon, a square is the quadrilateral of least perimeter enclosing a given area. Dually, a square is the quadrilateral containing the largest area within a given perimeter. Indeed, if ''A'' and ''P'' are the area and perimeter enclosed by a quadrilateral, then the following
isoperimetric inequality In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In n-dimensional space \R^n the inequality lower bounds the surface area or perimeter \operatorname(S) of a set S\subset\R^n ...
holds: :16A\le P^2 with equality if and only if the quadrilateral is a square.


Other facts

* The diagonals of a square are \sqrt (about 1.414) times the length of a side of the square. This value, known as the square root of 2 or Pythagoras' constant, was the first number proven to be irrational. * A square can also be defined as a parallelogram with equal diagonals that bisect the angles. * If a figure is both a rectangle (right angles) and a rhombus (equal edge lengths), then it is a square. * A square has a larger area than any other quadrilateral with the same perimeter. * A square tiling is one of three regular tilings of the plane (the others are the equilateral triangle and the regular hexagon). * The square is in two families of polytopes in two dimensions: hypercube and the cross-polytope. The Schläfli symbol for the square is . * The square is a highly symmetric object. There are four lines of reflectional symmetry and it has rotational symmetry of order 4 (through 90°, 180° and 270°). Its symmetry group is the dihedral group D4. * A square can be inscribed inside any regular polygon. The only other polygon with this property is the equilateral triangle. * If the inscribed circle of a square ''ABCD'' has tangency points ''E'' on ''AB'', ''F'' on ''BC'', ''G'' on ''CD'', and ''H'' on ''DA'', then for any point ''P'' on the inscribed circle, :: 2(PH^2-PE^2) = PD^2-PB^2. * If d_i is the distance from an arbitrary point in the plane to the ''i''-th vertex of a square and R is the circumradius of the square, then ::\frac + 3R^4 = \left(\frac + R^2\right)^2. * If L and d_i are the distances from an arbitrary point in the plane to the centroid of the square and its four vertices respectively, then ::d_1^2 + d_3^2 = d_2^2 + d_4^2 = 2(R^2+L^2) :and :: d_1^2d_3^2 + d_2^2d_4^2 = 2(R^4+L^4), :where R is the circumradius of the square.


Coordinates and equations

The coordinates for the vertices of a square with vertical and horizontal sides, centered at the origin and with side length 2 are (±1, ±1), while the interior of this square consists of all points (''x''i, ''y''i) with and . The equation :\max(x^2, y^2) = 1 specifies the boundary of this square. This equation means "''x''2 or ''y''2, whichever is larger, equals 1." The circumradius of this square (the radius of a circle drawn through the square's vertices) is half the square's diagonal, and is equal to \sqrt. Then the
circumcircle In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every pol ...
has the equation :x^2 + y^2 = 2. Alternatively the equation :\left, x - a\ + \left, y - b\ = r. can also be used to describe the boundary of a square with center coordinates (''a'', ''b''), and a horizontal or vertical radius of ''r''. The square is therefore the shape of a topological ball according to the L1 distance metric.


Construction

The following animations show how to construct a square using a compass and straightedge. This is possible as 4 = 22, a
power of two A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In a context where only integers are considered, is restricted to non-negati ...
.


Symmetry

The ''square'' has Dih4 symmetry,
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of d ...
8. There are 2 dihedral subgroups: Dih2, Dih1, and 3 cyclic subgroups: Z4, Z2, and Z1. A square is a special case of many lower symmetry quadrilaterals: * A rectangle with two adjacent equal sides * A quadrilateral with four equal sides and four right angles * A parallelogram with one right angle and two adjacent equal sides * A rhombus with a right angle * A rhombus with all angles equal * A rhombus with equal diagonals These 6 symmetries express 8 distinct symmetries on a square. John Conway labels these by a letter and group order. Each subgroup symmetry allows one or more degrees of freedom for irregular quadrilaterals. r8 is full symmetry of the square, and a1 is no symmetry. d4 is the symmetry of a rectangle, and p4 is the symmetry of a
rhombus In plane Euclidean geometry, a rhombus (plural rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. Th ...
. These two forms are duals of each other, and have half the symmetry order of the square. d2 is the symmetry of an isosceles trapezoid, and p2 is the symmetry of a
kite A kite is a tethered heavier than air flight, heavier-than-air or lighter-than-air craft with wing surfaces that react against the air to create Lift (force), lift and Drag (physics), drag forces. A kite consists of wings, tethers and anchors. ...
. g2 defines the geometry of a parallelogram. Only the g4 subgroup has no degrees of freedom, but can seen as a square with directed edges.


Squares inscribed in triangles

Every acute triangle has three inscribed squares (squares in its interior such that all four of a square's vertices lie on a side of the triangle, so two of them lie on the same side and hence one side of the square coincides with part of a side of the triangle). In a right triangle two of the squares coincide and have a vertex at the triangle's right angle, so a right triangle has only two ''distinct'' inscribed squares. An obtuse triangle has only one inscribed square, with a side coinciding with part of the triangle's longest side. The fraction of the triangle's area that is filled by the square is no more than 1/2.


Squaring the circle

Squaring the circle, proposed by ancient geometers, is the problem of constructing a square with the same area as a given
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
, by using only a finite number of steps with compass and straightedge. In 1882, the task was proven to be impossible as a consequence of the Lindemann–Weierstrass theorem, which proves that pi () is a transcendental number rather than an algebraic irrational number; that is, it is not the root of any polynomial with rational coefficients.


Non-Euclidean geometry

In non-Euclidean geometry, squares are more generally polygons with 4 equal sides and equal angles. In spherical geometry, a square is a polygon whose edges are great circle arcs of equal distance, which meet at equal angles. Unlike the square of plane geometry, the angles of such a square are larger than a right angle. Larger spherical squares have larger angles. In
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P' ...
, squares with right angles do not exist. Rather, squares in hyperbolic geometry have angles of less than right angles. Larger hyperbolic squares have smaller angles. Examples:


Crossed square

A crossed square is a faceting of the square, a self-intersecting polygon created by removing two opposite edges of a square and reconnecting by its two diagonals. It has half the symmetry of the square, Dih2, order 4. It has the same vertex arrangement as the square, and is vertex-transitive. It appears as two
45-45-90 triangle A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45° ...
with a common vertex, but the geometric intersection is not considered a vertex. A crossed square is sometimes likened to a bow tie or
butterfly Butterflies are insects in the macrolepidopteran clade Rhopalocera from the order Lepidoptera, which also includes moths. Adult butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. The group comprises ...
. the crossed rectangle is related, as a faceting of the rectangle, both special cases of crossed quadrilaterals. The interior of a crossed square can have a polygon density of ±1 in each triangle, dependent upon the winding orientation as clockwise or counterclockwise. A square and a crossed square have the following properties in common: * Opposite sides are equal in length. * The two diagonals are equal in length. * It has two lines of reflectional symmetry and rotational symmetry of order 2 (through 180°). It exists in the vertex figure of a uniform star polyhedra, the
tetrahemihexahedron In geometry, the tetrahemihexahedron or hemicuboctahedron is a uniform star polyhedron, indexed as U4. It has 7 faces (4 triangles and 3 squares), 12 edges, and 6 vertices. Its vertex figure is a crossed quadrilateral. Its Coxeter–Dynkin diagr ...
.


Graphs

The K4 complete graph is often drawn as a square with all 6 possible edges connected, hence appearing as a square with both diagonals drawn. This graph also represents an orthographic projection of the 4 vertices and 6 edges of the regular 3- simplex ( tetrahedron).


See also

*
Cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the on ...
* Pythagorean theorem * Square lattice *
Square number In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals and can be written as . The u ...
* Square root * Squaring the square * Squircle * Unit square


References


External links


Animated course (Construction, Circumference, Area)


With interactive applet

{{Authority control Elementary shapes Types of quadrilaterals 4 (number) Constructible polygons