HOME

TheInfoList



OR:

In mathematics, a sporadic group is one of the 26 exceptional
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
found in the
classification of finite simple groups In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it ...
. A
simple group SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The d ...
is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The classification theorem states that the
list of finite simple groups A ''list'' is any set of items in a row. List or lists may also refer to: People * List (surname) Organizations * List College, an undergraduate division of the Jewish Theological Seminary of America * SC Germania List, German rugby unio ...
consists of 18
countably In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
infinite plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. They are also known as the sporadic simple groups, or the sporadic finite groups. Because it is not strictly a
group of Lie type In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phras ...
, the
Tits group In group theory, the Tits group 2''F''4(2)′, named for Jacques Tits (), is a finite simple group of order :   211 · 33 · 52 · 13 = 17,971,200. It is sometimes considered a 27th sporadic group ...
is sometimes regarded as a sporadic group, in which case there would be 27 sporadic groups. The
monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order    246320597611213317192329314147 ...
is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it.


Names

Five of the sporadic groups were discovered by
Mathieu Mathieu is both a surname and a given name. Notable people with the name include: Surname * André Mathieu (1929–1968), Canadian pianist and composer * Anselme Mathieu (1828–1895), French Provençal poet * Claude-Louis Mathieu (1783–187 ...
in the 1860s and the other 21 were found between 1965 and 1975. Several of these groups were predicted to exist before they were constructed. Most of the groups are named after the mathematician(s) who first predicted their existence. The full list is: *
Mathieu group In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 obje ...
s ''M''11 (M11), ''M''12 (M12), ''M''22 (M22), ''M''23 (M23), ''M''24 (M24) *
Janko group In the area of modern algebra known as group theory, the Janko groups are the four sporadic simple groups '' J1'', '' J2'', '' J3'' and '' J4'' introduced by Zvonimir Janko. Unlike the Mathieu groups, Conway groups, or Fischer groups, t ...
s ''J''1 (J1), ''J''2 or ''HJ'' (J2), ''J''3 or ''HJM'' (J3), ''J''4 (J4) *
Conway group In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by . The largest of the Conway groups, Co0, is the group of auto ...
s '' Co1'' (Co1), '' Co2'' (), '' Co3'' (Co3) *
Fischer group In the area of modern algebra known as group theory, the Fischer groups are the three sporadic simple groups Fi22, Fi23 and Fi24 introduced by . 3-transposition groups The Fischer groups are named after Bernd Fischer who discovered them ...
s ''Fi''22 (Fi22), ''Fi''23 (Fi23), ''Fi''24′ or ''F''3+ (Fi24) *
Higman–Sims group In the area of modern algebra known as group theory, the Higman–Sims group HS is a sporadic simple group of order :   29⋅32⋅53⋅7⋅11 = 44352000 : ≈ 4. The Schur multiplier has order 2, the outer automorphis ...
''HS'' * McLaughlin group ''McL'' *
Held group In the area of modern algebra known as group theory, the Held group ''He'' is a sporadic simple group of order :   21033527317 = 4030387200 : ≈ 4. History ''He'' is one of the 26 sporadic groups and was found by during an in ...
''He'' or ''F''7+ or ''F''7 *
Rudvalis group In the area of modern algebra known as group theory, the Rudvalis group ''Ru'' is a sporadic simple group of order :   214335371329 : = 145926144000 : ≈ 1. History ''Ru'' is one of the 26 sporadic groups and was found by and c ...
''Ru'' * Suzuki group ''Suz'' or ''F''3− *
O'Nan group In the area of abstract algebra known as group theory, the O'Nan group ''O'N'' or O'Nan–Sims group is a sporadic simple group of order :   2934573111931 : = 460815505920 : ≈ 5. History ''O'Nan'' is one of the 26 sporadic grou ...
''O'N'' (ON) *
Harada–Norton group In the area of modern algebra known as group theory, the Harada–Norton group ''HN'' is a sporadic simple group of Order (group theory), order :   214365671119 : = 273030912000000 : ≈ 3. History and properties ''HN'' is one of ...
''HN'' or ''F''5+ or ''F''5 *
Lyons group In the area of modern algebra known as group theory, the Lyons group ''Ly'' or Lyons-Sims group ''LyS'' is a sporadic simple group of order :    283756711313767 : = 51765179004000000 : ≈ 5. History ''Ly'' is one of the 26 spor ...
''Ly'' * Thompson group ''Th'' or ''F''3, 3 or ''F''3 *
Baby Monster group In the area of modern algebra known as group theory, the baby monster group ''B'' (or, more simply, the baby monster) is a sporadic simple group of order :   241313567211131719233147 : = 4154781481226426191177580544000000 : = 4,1 ...
''B'' or ''F''2+ or ''F''2 * Fischer–Griess
Monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order    246320597611213317192329314147 ...
''M'' or ''F''1 The
Tits group In group theory, the Tits group 2''F''4(2)′, named for Jacques Tits (), is a finite simple group of order :   211 · 33 · 52 · 13 = 17,971,200. It is sometimes considered a 27th sporadic group ...
''T'' is sometimes also regarded as a sporadic group (it is almost but not strictly a group of Lie type), which is why in some sources the number of sporadic groups is given as 27 instead of 26. In some other sources, the Tits group is regarded as neither sporadic nor of Lie type.I
Eric W. Weisstein „Tits Group“ From MathWorld--A Wolfram Web Resource
there is a link from the Tits group to „Sporadic Group“, whereas i

however, the Tits group is ''not'' listed among the 26. Both sources checked on 2018-05-26.
Anyway, it is the of the ''infinite'' family of commutator groups — and thus by definition not sporadic. For these finite simple groups coincide with the
groups of Lie type In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phras ...
But for the
derived subgroup In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal ...
, called Tits group, is simple and has an index 2 in the finite group of Lie type which —as the only one of the whole family— is not simple. Matrix
representations ''Representations'' is an interdisciplinary journal in the humanities published quarterly by the University of California Press. The journal was established in 1983 and is the founding publication of the New Historicism movement of the 1980s. It ...
over finite fields for all the sporadic groups have been constructed. The earliest use of the term ''sporadic group'' may be where he comments about the Mathieu groups: "These apparently sporadic simple groups would probably repay a closer examination than they have yet received." The diagram at right is based on . It does not show the numerous non-sporadic simple subquotients of the sporadic groups.


Organization


Happy family

Of the 26 sporadic groups, 20 can be seen inside the
monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order    246320597611213317192329314147 ...
as
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
s or quotients of subgroups (
section Section, Sectioning or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
s). These twenty have been called the ''happy family'' by
Robert Griess Robert Louis Griess, Jr. (born 1945, Savannah, Georgia) is a mathematician working on finite simple groups and vertex algebras. He is currently the John Griggs Thompson Distinguished University Professor of mathematics at University of Michigan. ...
, and can be organized into three generations.


First generation (5 groups): the Mathieu groups

M''n'' for ''n'' = 11, 12, 22, 23 and 24 are multiply transitive
permutation group In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to it ...
s on ''n'' points. They are all subgroups of M24, which is a permutation group on 24 points.


Second generation (7 groups): the Leech lattice

All the subquotients of the
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
of a lattice in 24 dimensions called the
Leech lattice In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by . It may also have been discovered (but not published) by ...
: * ''Co''1 is the quotient of the automorphism group by its center * ''Co''2 is the stabilizer of a type 2 (i.e., length 2) vector * ''Co''3 is the stabilizer of a type 3 (i.e., length ) vector * ''Suz'' is the group of automorphisms preserving a complex structure (modulo its center) * ''McL'' is the stabilizer of a type 2-2-3 triangle * ''HS'' is the stabilizer of a type 2-3-3 triangle * ''J''2 is the group of automorphisms preserving a quaternionic structure (modulo its center).


Third generation (8 groups): other subgroups of the Monster

Consists of subgroups which are closely related to the Monster group ''M'': * ''B'' or ''F''2 has a double cover which is the
centralizer In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', o ...
of an element of order 2 in ''M'' * ''Fi''24′ has a triple cover which is the centralizer of an element of order 3 in ''M'' (in
conjugacy class In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other wor ...
"3A") * ''Fi''23 is a subgroup of ''Fi''24′ * ''Fi''22 has a double cover which is a subgroup of ''Fi''23 * The product of ''Th'' = ''F''3 and a group of order 3 is the centralizer of an element of order 3 in ''M'' (in conjugacy class "3C") * The product of ''HN'' = ''F''5 and a group of order 5 is the centralizer of an element of order 5 in ''M'' * The product of ''He'' = ''F''7 and a group of order 7 is the centralizer of an element of order 7 in ''M''. * Finally, the Monster group itself is considered to be in this generation. (This series continues further: the product of ''M''12 and a group of order 11 is the centralizer of an element of order 11 in ''M''.) The
Tits group In group theory, the Tits group 2''F''4(2)′, named for Jacques Tits (), is a finite simple group of order :   211 · 33 · 52 · 13 = 17,971,200. It is sometimes considered a 27th sporadic group ...
, if regarded as a sporadic group, would belong in this generation: there is a subgroup S4 ×2F4(2)′ normalising a 2C2 subgroup of ''B'', giving rise to a subgroup 2·S4 ×2F4(2)′ normalising a certain Q8 subgroup of the Monster. 2F4(2)′ is also a subquotient of the Fischer group ''Fi''22, and thus also of ''Fi''23 and ''Fi''24′, and of the Baby Monster ''B''. 2F4(2)′ is also a subquotient of the (pariah) Rudvalis group ''Ru'', and has no involvements in sporadic simple groups except the ones already mentioned.


Pariahs

The six exceptions are ''J''1, ''J''3, ''J''4, ''O'N'', ''Ru'' and ''Ly'', sometimes known as the
pariahs Pariah may refer to: * A member of the Paraiyar caste in the Indian state of Tamil Nadu * Pariah state, a country whose behavior does not conform to norms * Outcast (person) Science and mathematics * Pariah dog, a type of semi-feral dog * ''Pa ...
.


Table of the sporadic group orders (w/ Tits group)


References

* * * * * Issue
12
... * *


External links

* {{MathWorld, urlname=SporadicGroup, title=Sporadic Group
Atlas of Finite Group Representations: Sporadic groups
* Mathematical tables he:משפט המיון לחבורות פשוטות סופיות