Higman–Sims Group
   HOME
*





Higman–Sims Group
In the area of modern algebra known as group theory, the Higman–Sims group HS is a sporadic simple group of order :   29⋅32⋅53⋅7⋅11 = 44352000 : ≈ 4. The Schur multiplier has order 2, the outer automorphism group has order 2, and the group 2.HS.2 appears as an involution centralizer in the Harada–Norton group. History HS is one of the 26 sporadic groups and was found by . They were attending a presentation by Marshall Hall on the Hall–Janko group J2. It happens that J2 acts as a permutation group on the Hall–Janko graph of 100 points, the stabilizer of one point being a subgroup with two other orbits of lengths 36 and 63. Inspired by this they decided to check for other rank 3 permutation groups on 100 points. They soon focused on a possible one containing the Mathieu group M22, which has permutation representations on 22 and 77 points. (The latter representation arises because the M22 Steiner system has 77 blocks.) By putting toge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Group
In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to itself). The group of ''all'' permutations of a set ''M'' is the symmetric group of ''M'', often written as Sym(''M''). The term ''permutation group'' thus means a subgroup of the symmetric group. If then Sym(''M'') is usually denoted by S''n'', and may be called the ''symmetric group on n letters''. By Cayley's theorem, every group is isomorphic to some permutation group. The way in which the elements of a permutation group permute the elements of the set is called its group action. Group actions have applications in the study of symmetries, combinatorics and many other branches of mathematics, physics and chemistry. Basic properties and terminology Being a subgroup of a symmetric group, all that is necessary for a set of permutatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathieu Group M11
In the area of modern algebra known as group theory, the Mathieu group ''M11'' is a sporadic simple group of order :   2432511 = 111098 = 7920. History and properties ''M11'' is one of the 26 sporadic groups and was introduced by . It is the smallest sporadic group and, along with the other four Mathieu groups, the first to be discovered. The Schur multiplier and the outer automorphism group are both trivial. ''M11'' is a sharply 4-transitive permutation group on 11 objects. It admits many generating sets of permutations, such as the pair (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) of permutations used by the GAP computer algebra system. Representations M11 has a sharply 4-transitive permutation representation on 11 points. The point stabilizer is sometimes denoted by M10, and is a non-split extension of the form A6.2 (an extension of the group of order 2 by the alternating group A6). This action is the automorphism group of a Steiner system S(4,5,11) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Covering Groups Of The Alternating And Symmetric Groups
In the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were classified in : for , the covering groups are 2-fold covers except for the alternating groups of degree 6 and 7 where the covers are 6-fold. For example the binary icosahedral group covers the icosahedral group, an alternating group of degree 5, and the binary tetrahedral group covers the tetrahedral group, an alternating group of degree 4. Definition and classification A group homomorphism from ''D'' to ''G'' is said to be a Schur cover of the finite group ''G'' if: # the kernel is contained both in the center and the commutator subgroup of ''D'', and # amongst all such homomorphisms, this ''D'' has maximal size. The Schur multiplier of ''G'' is the kernel of any Schur cover and has many interpretations. When the homomorphism is understood, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rank 3 Permutation Group
Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * Hierarchy of the Catholic Church * Military rank * Police ranks of the United States * Ranking member, S politicsthe most senior member of a committee from the minority party, and thus second-most senior member of a committee * Imperial, royal and noble ranks Level or position in society *Social class *Social position *Social status Places * Rank, Iran, a village * Rank, Nepal, a village development committee People * Rank (surname), a list of people with the name Arts, entertainment, and media Music * ''Rank'' (album), a live album by the Smiths * "Rank", a song by Artwork from '' A Bugged Out Mix'' Other arts, entertainment, and media * Rank (chess), a row of the chessboard * ''Rank'' (film), a short film directed by David Yates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Doubly Transitive
A group G acts 2-transitively on a set S if it acts transitively on the set of distinct ordered pairs \. That is, assuming (without a real loss of generality) that G acts on the left of S, for each pair of pairs (x,y),(w,z)\in S\times S with x \neq y and w\neq z, there exists a g\in G such that g(x,y) = (w,z). The group action is sharply 2-transitive if such g\in G is unique. A 2-transitive group is a group such that there exists a group action that's 2-transitive and faithful. Similarly we can define sharply 2-transitive group. Equivalently, gx = w and gy = z, since the induced action on the distinct set of pairs is g(x,y) = (gx,gy). The definition works in general with ''k'' replacing 2. Such multiply transitive permutation groups can be defined for any natural number ''k''. Specifically, a permutation group ''G'' acting on ''n'' points is ''k''-transitive if, given two sets of points ''a''1, ... ''a''''k'' and ''b''1, ... ''b''''k'' with the property that all the ''a''''i'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathieu Group M22
In the area of modern algebra known as group theory, the Mathieu group ''M22'' is a sporadic simple group of Order (group theory), order :   27325711 = 443520 : ≈ 4. History and properties ''M22'' is one of the 26 sporadic groups and was introduced by . It is a 3-fold transitive permutation group on 22 objects. The Schur multiplier of M22 is cyclic of order 12, and the outer automorphism group has order 2. There are several incorrect statements about the 2-part of the Schur multiplier in the mathematical literature. incorrectly claimed that the Schur multiplier of M22 has order 3, and in a correction incorrectly claimed that it has order 6. This caused an error in the title of the paper announcing the discovery of the Janko group J4. showed that the Schur multiplier is in fact cyclic of order 12. calculated the 2-part of all the cohomology of M22. Representations M22 has a 3-transitive permutation representation on 22 points, with point stabilizer th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leech Lattice
In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by . It may also have been discovered (but not published) by Ernst Witt in 1940. Characterization The Leech lattice Λ24 is the unique lattice in 24-dimensional Euclidean space, E24, with the following list of properties: *It is unimodular; i.e., it can be generated by the columns of a certain 24×24 matrix with determinant 1. *It is even; i.e., the square of the length of each vector in Λ24 is an even integer. *The length of every non-zero vector in Λ24 is at least 2. The last condition is equivalent to the condition that unit balls centered at the points of Λ24 do not overlap. Each is tangent to 196,560 neighbors, and this is known to be the largest number of non-overlapping 24-dimensional unit balls that can simultaneously touch a single unit ball. This arrangement of 196,560 un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE