Specific impulse (usually abbreviated ) is a measure of how efficiently a reaction mass engine (a
rocket
A rocket (from it, rocchetto, , bobbin/spool) is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely fr ...
using propellant or a
jet engine using fuel) creates thrust. For engines whose reaction mass is only the fuel they carry, specific impulse is exactly proportional to the effective exhaust gas velocity.
A propulsion system with a higher specific impulse uses the mass of the propellant more efficiently. In the case of a rocket, this means less propellant needed for a given
delta-v
Delta-''v'' (more known as " change in velocity"), symbolized as ∆''v'' and pronounced ''delta-vee'', as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such a ...
,
so that the vehicle attached to the engine can more efficiently gain altitude and velocity.
In an atmospheric context, specific impulse can include the contribution to impulse provided by the mass of external air that is accelerated by the engine in some way, such as by an internal turbofan or heating by fuel combustion participation then thrust expansion or by external propeller. Jet engines breathe external air for both combustion and by-pass, and therefore have a much higher specific impulse than rocket engines. The specific impulse in terms of propellant mass spent has units of distance per time, which is a notional velocity called the ''effective exhaust velocity''. This is higher than the ''actual'' exhaust velocity because the mass of the combustion air is not being accounted for. Actual and effective exhaust velocity are the same in rocket engines operating in a vacuum.
Specific impulse is inversely proportional to
specific fuel consumption (SFC) by the relationship for SFC in kg/(N·s) and for SFC in lb/(lbf·hr).
General considerations
The amount of propellant can be measured either in units of mass or weight. If mass is used, specific impulse is an
impulse
Impulse or Impulsive may refer to:
Science
* Impulse (physics), in mechanics, the change of momentum of an object; the integral of a force with respect to time
* Impulse noise (disambiguation)
* Specific impulse, the change in momentum per uni ...
per unit of mass, which
dimensional analysis
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measure (such as mi ...
shows to have units of speed, specifically the effective exhaust velocity. As the SI system is mass-based, this type of analysis is usually done in meters per second. If a force-based unit system is used, impulse is divided by propellant weight (weight is a measure of force), resulting in units of time (seconds). These two formulations differ from each other by the standard
gravitational acceleration
In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by the force of gravitational attraction. All bodi ...
(''g''
0) at the surface of the earth.
The rate of change of momentum of a rocket (including its propellant) per unit time is equal to the thrust. The higher the specific impulse, the less propellant is needed to produce a given thrust for a given time and the more efficient the propellant is. This should not be confused with the physics concept of
energy efficiency
Energy efficiency may refer to:
* Energy efficiency (physics), the ratio between the useful output and input of an energy conversion process
** Electrical efficiency, useful power output per electrical power consumed
** Mechanical efficiency, a ra ...
, which can decrease as specific impulse increases, since propulsion systems that give high specific impulse require high energy to do so.
Thrust
Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that sys ...
and specific impulse should not be confused. Thrust is the force supplied by the engine and depends on the amount of reaction mass flowing through the engine. Specific impulse measures the impulse produced per unit of propellant and is proportional to the exhaust velocity. Thrust and specific impulse are related by the design and propellants of the engine in question, but this relationship is tenuous. For example,
LH2/LO bipropellant produces higher but lower thrust than
RP-1
RP-1 (alternatively, Rocket Propellant-1 or Refined Petroleum-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel. RP-1 provides a lower specific impulse than liquid hydrogen (LH2), but is cheaper, is s ...
/
LO due to the exhaust gases having a lower density and higher velocity (
H2O vs
CO2 and H
2O). In many cases, propulsion systems with very high specific impulse—some
ion thruster
An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity.
An ion thruster ionizes a neutral gas by extracting some electrons out of ...
s reach 10,000 seconds—produce low thrust.
When calculating specific impulse, only propellant carried with the vehicle before use is counted. For a chemical rocket, the propellant mass therefore would include both fuel and
oxidizer
An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an oxid ...
. In rocketry, a heavier engine with a higher specific impulse may not be as effective in gaining altitude, distance, or velocity as a lighter engine with a lower specific impulse, especially if the latter engine possesses a higher
thrust-to-weight ratio
Thrust-to-weight ratio is a dimensionless ratio of thrust to weight of a rocket, jet engine, propeller engine, or a vehicle propelled by such an engine that is an indicator of the performance of the engine or vehicle.
The instantaneous thrust-to- ...
. This is a significant reason for most rocket designs having multiple stages. The first stage is optimised for high thrust to boost the later stages with higher specific impulse into higher altitudes where they can perform more efficiently.
For air-breathing engines, only the mass of the fuel is counted, not the mass of air passing through the engine. Air resistance and the engine's inability to keep a high specific impulse at a fast burn rate are why all the propellant is not used as fast as possible.
If it were not for air resistance and the reduction of propellant during flight, specific impulse would be a direct measure of the engine's effectiveness in converting propellant weight or mass into forward momentum.
Units
The most common unit for specific impulse is the second, as values are identical regardless of whether the calculations are done in
SI,
imperial
Imperial is that which relates to an empire, emperor, or imperialism.
Imperial or The Imperial may also refer to:
Places
United States
* Imperial, California
* Imperial, Missouri
* Imperial, Nebraska
* Imperial, Pennsylvania
* Imperial, Texa ...
, or
customary
Custom, customary, or consuetudinary may refer to:
Traditions, laws, and religion
* Convention (norm), a set of agreed, stipulated or generally accepted rules, norms, standards or criteria, often taking the form of a custom
* Norm (social), a r ...
units. Nearly all manufacturers quote their engine performance in seconds, and the unit is also useful for specifying aircraft engine performance.
The use of
metres per second
The metre per second is the unit of both speed (a scalar quantity) and velocity (a vector quantity, which has direction and magnitude) in the International System of Units (SI), equal to the speed of a body covering a distance of one metre in a ...
to specify effective exhaust velocity is also reasonably common. The unit is intuitive when describing rocket engines, although the effective exhaust speed of the engines may be significantly different from the actual exhaust speed, especially in
gas-generator cycle
The gas-generator cycle is a power cycle of a pumped liquid bipropellant rocket engine. Part of the unburned propellant is burned in a gas generator (or preburner) and the resulting hot gas is used to power the propellant pumps before being exh ...
engines. For
airbreathing jet engine
An airbreathing jet engine (or ''ducted jet engine'') is a jet engine that ejects a propelling (reaction) jet of hot exhaust gases after first taking in atmospheric air, followed by compression, heating and expansion back to atmospheric pressure t ...
s, the effective exhaust velocity is not physically meaningful, although it can be used for comparison purposes.
Metres per second are numerically equivalent to newton-seconds per kg (N·s/kg), and SI measurements of specific impulse can be written in terms of either units interchangeably. This unit highlights the definition of specific impulse as
impulse
Impulse or Impulsive may refer to:
Science
* Impulse (physics), in mechanics, the change of momentum of an object; the integral of a force with respect to time
* Impulse noise (disambiguation)
* Specific impulse, the change in momentum per uni ...
per unit mass of propellant.
Specific fuel consumption is inversely proportional to specific impulse and has units of g/(kN·s) or lb/(lbf·hr). Specific fuel consumption is used extensively for describing the performance of air-breathing jet engines.
Specific impulse in seconds
Specific impulse, measured in seconds, effectively means how many seconds this propellant, when paired with this engine, can accelerate its own initial mass at 1 g. The longer it can accelerate its own mass, the more delta-V it delivers to the whole system.
In other words, given a particular engine and a mass of a particular propellant, specific impulse measures for how long a time that engine can exert a continuous force (thrust) until fully burning that mass of propellant. A given mass of a more energy-dense propellant can burn for a longer duration than some less energy-dense propellant made to exert the same force while burning in an engine. Different engine designs burning the same propellant may not be equally efficient at directing their propellant's energy into effective thrust.
For all vehicles, specific impulse (impulse per unit weight-on-Earth of propellant) in seconds can be defined by the following equation:
[Rocket Propulsion Elements, 7th Edition by George P. Sutton, Oscar Biblarz]
where:
*
is the thrust obtained from the engine (
newtons or
pounds force),
*
is the
standard gravity, which is nominally the gravity at Earth's surface (m/s
2 or ft/s
2),
*
is the specific impulse measured (seconds),
*
is the
mass flow rate
In physics and engineering, mass flow rate is the mass of a substance which passes per unit of time. Its unit is kilogram per second in SI units, and slug per second or pound per second in US customary units. The common symbol is \dot ('' ...
of the expended propellant (kg/s or
slugs/s)
The
English unit
English units are the units of measurement used in England up to 1826 (when they were replaced by Imperial units), which evolved as a combination of the Anglo-Saxon and Roman systems of units. Various standards have applied to English units at d ...
pound mass
The pound or pound-mass is a unit of mass used in British imperial and United States customary systems of measurement. Various definitions have been used; the most common today is the international avoirdupois pound, which is legally defined ...
is more commonly used than the slug, and when using pounds per second for mass flow rate, the conversion constant ''g''
0 becomes unnecessary, because the slug is dimensionally equivalent to pounds divided by ''g''
0:
''I''
sp in seconds is the amount of time a rocket engine can generate thrust, given a quantity of propellant whose weight is equal to the engine's thrust. The last term on the right,
, is necessary for dimensional consistency (
)
The advantage of this formulation is that it may be used for rockets, where all the reaction mass is carried on board, as well as airplanes, where most of the reaction mass is taken from the atmosphere. In addition, it gives a result that is independent of units used (provided the unit of time used is the second).
Rocketry
In rocketry, the only reaction mass is the propellant, so the specific impulse is calculated using an alternative method, giving results with units of seconds. Specific impulse is defined as the thrust integrated over time per unit
weight
In science and engineering, the weight of an object is the force acting on the object due to gravity.
Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar qua ...
-on-Earth of the propellant:
where
*
is the specific impulse measured in seconds,
*
is the average exhaust speed along the axis of the engine (in m/s or ft/s),
*
is the
standard gravity (in m/s
2 or ft/s
2).
In rockets, due to atmospheric effects, the specific impulse varies with altitude, reaching a maximum in a vacuum. This is because the exhaust velocity isn't simply a function of the chamber pressure, but is
a function of the difference between the interior and exterior of the combustion chamber. Values are usually given for operation at sea level ("sl") or in a vacuum ("vac").
Specific impulse as effective exhaust velocity
Because of the geocentric factor of ''g''
0 in the equation for specific impulse, many prefer an alternative definition. The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, ''v''
e. "In actual rocket nozzles, the exhaust velocity is not really uniform over the entire exit cross section and such velocity profiles are difficult to measure accurately. A uniform axial velocity, ''v''
e, is assumed for all calculations which employ one-dimensional problem descriptions. This effective exhaust velocity represents an average or mass equivalent velocity at which propellant is being ejected from the rocket vehicle." The two definitions of specific impulse are proportional to one another, and related to each other by:
where
*
is the specific impulse in seconds,
*
is the specific impulse measured in
m/s, which is the same as the effective exhaust velocity measured in m/s (or ft/s if g is in ft/s
2),
*
is the
standard gravity, 9.80665 m/s
2 (in
United States customary units 32.174 ft/s
2).
This equation is also valid for air-breathing jet engines, but is rarely used in practice.
(Note that different symbols are sometimes used; for example, ''c'' is also sometimes seen for exhaust velocity. While the symbol
might logically be used for specific impulse in units of (N·s)/(m·kg); to avoid confusion, it is desirable to reserve this for specific impulse measured in seconds.)
It is related to the
thrust
Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that sys ...
, or forward force on the rocket by the equation:
where
is the propellant mass flow rate, which is the rate of decrease of the vehicle's mass.
A rocket must carry all its propellant with it, so the mass of the unburned propellant must be accelerated along with the rocket itself. Minimizing the mass of propellant required to achieve a given change in velocity is crucial to building effective rockets. The
Tsiolkovsky rocket equation
Konstantin Eduardovich Tsiolkovsky (russian: Константи́н Эдуа́рдович Циолко́вский , , p=kənstɐnʲˈtʲin ɪdʊˈardəvʲɪtɕ tsɨɐlˈkofskʲɪj , a=Ru-Konstantin Tsiolkovsky.oga; – 19 September 1935) ...
shows that for a rocket with a given empty mass and a given amount of propellant, the total change in
velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
it can accomplish is proportional to the effective exhaust velocity.
A spacecraft without propulsion follows an orbit determined by its trajectory and any gravitational field. Deviations from the corresponding velocity pattern (these are called
Δ''v'') are achieved by sending exhaust mass in the direction opposite to that of the desired velocity change.
Actual exhaust speed versus effective exhaust speed
When an engine is run within the atmosphere, the exhaust velocity is reduced by atmospheric pressure, in turn reducing specific impulse. This is a reduction in the effective exhaust velocity, versus the actual exhaust velocity achieved in vacuum conditions. In the case of
gas-generator cycle
The gas-generator cycle is a power cycle of a pumped liquid bipropellant rocket engine. Part of the unburned propellant is burned in a gas generator (or preburner) and the resulting hot gas is used to power the propellant pumps before being exh ...
rocket engines, more than one exhaust gas stream is present as
turbopump
A turbopump is a propellant pump with two main components: a rotodynamic pump and a driving gas turbine, usually both mounted on the same shaft, or sometimes geared together. They were initially developed in Germany in the early 1940s. The purpo ...
exhaust gas exits through a separate nozzle. Calculating the effective exhaust velocity requires averaging the two mass flows as well as accounting for any atmospheric pressure.
For air-breathing jet engines, particularly
turbofan
The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the ''turbo'' portion refers to a gas turbine engine which achieves mechanic ...
s, the actual exhaust velocity and the effective exhaust velocity are different by orders of magnitude. This happens for several reasons. First, a good deal of additional momentum is obtained by using air as reaction mass, such that combustion products in the exhaust have more mass than the burned fuel. Next, inert gases in the atmosphere absorb heat from combustion, and through the resulting expansion provide additional thrust. Lastly, for turbofans and other designs there is even more thrust created by pushing against intake air which never sees combustion directly. These all combine to allow a better match between the airspeed and the exhaust speed, which saves energy/propellant and enormously increases the ''effective'' exhaust velocity while reducing the ''actual'' exhaust velocity. Again, this is because the mass of the air is not counted in the specific impulse calculation, thus attributing ''all'' of the thrust momentum to the mass of the fuel component of the exhaust, and omitting the reaction mass, inert gas, and effect of driven fans on overall engine efficiency from consideration.
Essentially, the momentum of engine exhaust includes a lot more than just fuel, but specific impulse calculation ignores everything but the fuel. Even though the ''effective'' exhaust velocity for an air-breathing engine seems nonsensical in the context of actual exhaust velocity, this is still useful for comparing absolute fuel efficiency of different engines.
Density specific impulse
A related measure, the density specific impulse, sometimes also referred to as Density Impulse and usually abbreviated as is the product of the average specific gravity of a given propellant mixture and the specific impulse. While less important than the specific impulse, it is an important measure in launch vehicle design, as a low specific impulse implies that bigger tanks will be required to store the propellant, which in turn will have a detrimental effect on the launch vehicle's
mass ratio
In aerospace engineering, mass ratio is a measure of the efficiency of a rocket. It describes how much more massive the vehicle is with propellant than without; that is, the ratio of the rocket's ''wet mass'' (vehicle plus contents plus propellan ...
.
Examples
An example of a specific impulse measured in time is 453 seconds, which is equivalent to an
effective exhaust velocity
Specific impulse (usually abbreviated ) is a measure of how efficiently a reaction mass engine (a rocket using propellant or a jet engine using fuel) creates thrust. For engines whose reaction mass is only the fuel they carry, specific impulse is ...
of , for the
RS-25
The Aerojet Rocketdyne RS-25, also known as the Space Shuttle Main Engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle and is currently used on the Space Launch System (SLS).
Designed and manufactu ...
engines when operating in a vacuum. An air-breathing jet engine typically has a much larger specific impulse than a rocket; for example a
turbofan
The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the ''turbo'' portion refers to a gas turbine engine which achieves mechanic ...
jet engine may have a specific impulse of 6,000 seconds or more at sea level whereas a rocket would be between 200 and 400 seconds.
An air-breathing engine is thus much more propellant efficient than a rocket engine, because the air serves as reaction mass and oxidizer for combustion which does not have to be carried as propellant, and the actual exhaust speed is much lower, so the kinetic energy the exhaust carries away is lower and thus the jet engine uses far less energy to generate thrust. While the ''actual'' exhaust velocity is lower for air-breathing engines, the ''effective'' exhaust velocity is very high for jet engines. This is because the effective exhaust velocity calculation assumes that the carried propellant is providing all the reaction mass and all the thrust. Hence effective exhaust velocity is not physically meaningful for air-breathing engines; nevertheless, it is useful for comparison with other types of engines.
The highest specific impulse for a chemical propellant ever test-fired in a rocket engine was with a
tripropellant of
lithium
Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
,
fluorine, and
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
. However, this combination is impractical. Lithium and fluorine are both extremely corrosive, lithium ignites on contact with air, fluorine ignites on contact with most fuels, and hydrogen, while not hypergolic, is an explosive hazard. Fluorine and the hydrogen fluoride (HF) in the exhaust are very toxic, which damages the environment, makes work around the launch pad difficult, and makes getting a launch license that much more difficult. The rocket exhaust is also ionized, which would interfere with radio communication with the rocket.
Nuclear thermal rocket
A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction, often nuclear fission, replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrog ...
engines differ from conventional rocket engines in that energy is supplied to the propellants by an external nuclear heat source instead of the heat of combustion. The nuclear rocket typically operates by passing liquid hydrogen gas through an operating nuclear reactor. Testing in the 1960s yielded specific impulses of about 850 seconds (8,340 m/s), about twice that of the Space Shuttle engines.
A variety of other rocket propulsion methods, such as
ion thruster
An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity.
An ion thruster ionizes a neutral gas by extracting some electrons out of ...
s, give much higher specific impulse but with much lower thrust; for example the
Hall-effect thruster
In spacecraft propulsion, a Hall-effect thruster (HET) is a type of ion thruster in which the propellant is accelerated by an electric field. Hall-effect thrusters (based on the discovery by Edwin Hall) are sometimes referred to as Hall thruste ...
on the
SMART-1 satellite has a specific impulse of but a maximum thrust of only . The
variable specific impulse magnetoplasma rocket
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electrothermal thruster under development for possible use in spacecraft propulsion. It uses radio waves to ionize and heat an inert propellant, forming a plasma, then a magnetic ...
(VASIMR) engine currently in development will theoretically yield , and a maximum thrust of .
See also
*
Jet engine
*
Impulse
Impulse or Impulsive may refer to:
Science
* Impulse (physics), in mechanics, the change of momentum of an object; the integral of a force with respect to time
* Impulse noise (disambiguation)
* Specific impulse, the change in momentum per uni ...
*
Tsiolkovsky rocket equation
Konstantin Eduardovich Tsiolkovsky (russian: Константи́н Эдуа́рдович Циолко́вский , , p=kənstɐnʲˈtʲin ɪdʊˈardəvʲɪtɕ tsɨɐlˈkofskʲɪj , a=Ru-Konstantin Tsiolkovsky.oga; – 19 September 1935) ...
*
System-specific impulse
*
Specific energy
Specific energy or massic energy is energy per unit mass. It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, sto ...
*
Standard gravity
*
Thrust specific fuel consumption
Thrust-specific fuel consumption (TSFC) is the fuel efficiency of an engine design with respect to thrust output. TSFC may also be thought of as fuel consumption (grams/second) per unit of thrust (newtons, or N), hence ''thrust-specific''. This fi ...
—fuel consumption per unit thrust
*
Specific thrust
Specific thrust is the thrust per unit air mass flowrate of a jet engine (e.g. turbojet, turbofan, etc.) and can be calculated by the ratio of net thrust/total intake airflow.
Low specific thrust engines tend to be more efficient of propellant (a ...
—thrust per unit of air for a duct engine
*
Heating value
The heating value (or energy value or calorific value) of a substance, usually a fuel or food (see food energy), is the amount of heat released during the combustion of a specified amount of it.
The ''calorific value'' is the total energy relea ...
*
Energy density
*
Delta-v (physics)
In general physics, delta-''v'' is a change in velocity. The Greek uppercase letter Δ (delta) is the standard mathematical symbol to represent change in some quantity.
Depending on the situation, delta-''v'' can be either a spatial vector (Δv ...
*
Rocket propellant
*
Liquid rocket propellants
The highest specific impulse chemical rockets use liquid propellants ( liquid-propellant rockets). They can consist of a single chemical (a monopropellant) or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into ...
Notes
References
External links
RPA - Design Tool for Liquid Rocket Engine Analysis
{{DEFAULTSORT:Specific Impulse
Rocket propulsion
Spacecraft propulsion
Physical quantities
Classical mechanics
Engine technology