Source–sink Dynamics
   HOME

TheInfoList



OR:

Source–sink dynamics is a theoretical model used by ecologists to describe how variation in
habitat In ecology, the term habitat summarises the array of resources, physical and biotic factors that are present in an area, such as to support the survival and reproduction of a particular species. A species habitat can be seen as the physical ...
quality may affect the
population Population typically refers to the number of people in a single area, whether it be a city or town, region, country, continent, or the world. Governments typically quantify the size of the resident population within their jurisdiction using a ...
growth or decline of
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and ...
s. Since quality is likely to vary among patches of habitat, it is important to consider how a low quality patch might affect a population. In this model, organisms occupy two patches of habitat. One patch, the source, is a high quality habitat that on average allows the population to increase. The second patch, the sink, is very low quality habitat that, on its own, would not be able to support a population. However, if the excess of
individual An individual is that which exists as a distinct entity. Individuality (or self-hood) is the state or quality of being an individual; particularly (in the case of humans) of being a person unique from other people and possessing one's own Maslow ...
s produced in the source frequently moves to the sink, the sink population can persist indefinitely. Organisms are generally assumed to be able to distinguish between high and low quality habitat, and to prefer high quality habitat. However,
ecological trap Ecological traps are scenarios in which rapid environmental change leads organisms to prefer to settle in poor-quality habitats. The concept stems from the idea that organisms that are actively selecting habitat must rely on environmental cues to h ...
theory describes the reasons why organisms may actually prefer sink patches over source patches. Finally, the source-sink model implies that some habitat patches may be more important to the long-term survival of the population, and considering the presence of source-sink dynamics will help inform
conservation Conservation is the preservation or efficient use of resources, or the conservation of various quantities under physical laws. Conservation may also refer to: Environment and natural resources * Nature conservation, the protection and managem ...
decisions.


Theory development

Although the seeds of a source-sink model had been planted earlier, Pulliam is often recognized as the first to present a fully developed source-sink model. He defined source and sink patches in terms of their demographic parameters, or BIDE rates (
birth Birth is the act or process of bearing or bringing forth offspring, also referred to in technical contexts as parturition. In mammals, the process is initiated by hormones which cause the muscular walls of the uterus to contract, expelling the f ...
,
immigration Immigration is the international movement of people to a destination country of which they are not natives or where they do not possess citizenship in order to settle as permanent residents or naturalized citizens. Commuters, tourists, and ...
,
death Death is the irreversible cessation of all biological functions that sustain an organism. For organisms with a brain, death can also be defined as the irreversible cessation of functioning of the whole brain, including brainstem, and brain ...
, and
emigration Emigration is the act of leaving a resident country or place of residence with the intent to settle elsewhere (to permanently leave a country). Conversely, immigration describes the movement of people into one country from another (to permanentl ...
rates). In the source patch, birth rates were greater than death rates, causing the population to grow. The excess individuals were expected to leave the patch, so that emigration rates were greater than immigration rates. In other words, sources were a net exporter of individuals. In contrast, in a sink patch, death rates were greater than birth rates, resulting in a population decline toward extinction unless enough individuals emigrated from the source patch. Immigration rates were expected to be greater than emigration rates, so that sinks were a net importer of individuals. As a result, there would be a net flow of individuals from the source to the sink (see Table 1). Pulliam's work was followed by many others who developed and tested the source-sink model. Watkinson and Sutherland presented a phenomenon in which high immigration rates could cause a patch to appear to be a sink by raising the patch's population above its
carrying capacity The carrying capacity of an environment is the maximum population size of a biological species that can be sustained by that specific environment, given the food, habitat, water, and other resources available. The carrying capacity is defined as t ...
(the number of individuals it can support). However, in the absence of immigration, the patches are able to support a smaller population. Since true sinks cannot support any population, the authors called these patches "pseudo-sinks". Definitively distinguishing between true sinks and pseudo-sinks requires cutting off immigration to the patch in question and determining whether the patch is still able to maintain a population. Thomas et al. were able to do just that, taking advantage of an unseasonable frost that killed off the host plants for a source population of Edith's checkerspot butterfly (''Euphydryas editha''). Without the host plants, the supply of immigrants to other nearby patches was cut off. Although these patches had appeared to be sinks, they did not become extinct without the constant supply of immigrants. They were capable of sustaining a smaller population, suggesting that they were in fact pseudo-sinks. Watkinson and Sutherland's caution about identifying pseudo-sinks was followed by Dias, who argued that differentiating between sources and sinks themselves may be difficult. She asserted that a long-term study of the demographic parameters of the populations in each patch is necessary. Otherwise, temporary variations in those parameters, perhaps due to climate fluctuations or natural disasters, may result in a misclassification of the patches. For example, Johnson described periodic flooding of a river in
Costa Rica Costa Rica (, ; ; literally "Rich Coast"), officially the Republic of Costa Rica ( es, República de Costa Rica), is a country in the Central American region of North America, bordered by Nicaragua to the north, the Caribbean Sea to the no ...
which completely inundated patches of the host plant for a rolled-leaf beetle (''Cephaloleia fenestrata''). During the floods, these patches became sinks, but at other times they were no different from other patches. If researchers had not considered what happened during the floods, they would not have understood the full complexity of the system. Dias also argued that an inversion between source and sink habitat is possible so that the sinks may actually become the sources. Because reproduction in source patches is much higher than in sink patches, natural selection is generally expected to favor adaptations to the source habitat. However, if the proportion of source to sink habitat changes so that sink habitat becomes much more available, organisms may begin to adapt to it instead. Once adapted, the sink may become a source habitat. This is believed to have occurred for the
blue tit The Eurasian blue tit (''Cyanistes caeruleus'') is a small passerine bird in the tit family, Paridae. It is easily recognisable by its blue and yellow plumage and small size. Eurasian blue tits, usually resident and non-migratory birds, are ...
(''Parus caeruleus'') 7500 years ago as forest composition on
Corsica Corsica ( , Upper , Southern ; it, Corsica; ; french: Corse ; lij, Còrsega; sc, Còssiga) is an island in the Mediterranean Sea and one of the 18 regions of France. It is the fourth-largest island in the Mediterranean and lies southeast of ...
changed, but few modern examples are known. Boughton described a source—pseudo-sink inversion in butterfly populations of ''E. editha''. Following the frost, the butterflies had difficulty recolonizing the former source patches. Boughton found that the host plants in the former sources senesced much earlier than in the former pseudo-sink patches. As a result, immigrants regularly arrived too late to successfully reproduce. He found that the former pseudo-sinks had become sources, and the former sources had become true sinks. One of the most recent additions to the source-sink literature is by Tittler et al., who examined wood thrush (''Hylocichla mustelina'') survey data for evidence of source and sink populations on a large scale. The authors reasoned that emigrants from sources would likely be the juveniles produced in one year dispersing to reproduce in sinks in the next year, producing a one-year time lag between population changes in the source and in the sink. Using data from the Breeding Bird Survey, an annual survey of North American birds, they looked for relationships between survey sites showing such a one-year time lag. They found several pairs of sites showing significant relationships 60–80 km apart. Several appeared to be sources to more than one sink, and several sinks appeared to receive individuals from more than one source. In addition, some sites appeared to be a sink to one site and a source to another (see Figure 1). The authors concluded that source-sink dynamics may occur on continental scales. One of the more confusing issues involves identifying sources and sinks in the field. Runge et al. point out that in general researchers need to estimate per capita reproduction, probability of survival, and probability of emigration to differentiate source and sink habitats. If emigration is ignored, then individuals that emigrate may be treated as mortalities, thus causing sources to be classified as sinks. This issue is important if the source-sink concept is viewed in terms of habitat quality (as it is in Table 1) because classifying high-quality habitat as low-quality may lead to mistakes in ecological management. Runge et al. showed how to integrate the theory of source-sink dynamics with population projection matrices and ecological statistics in order to differentiate sources and sinks.


Modes of dispersal

Why would individuals ever leave high quality source habitat for a low quality sink habitat? This question is central to source-sink theory. Ultimately, it depends on the organisms and the way they move and distribute themselves between habitat patches. For example, plants disperse passively, relying on other agents such as wind or water currents to move seeds to another patch. Passive dispersal can result in source-sink dynamics whenever the seeds land in a patch that cannot support the plant's growth or reproduction. Winds may continually deposit seeds there, maintaining a population even though the plants themselves do not successfully reproduce. Another good example for this case are soil protists. Soil protists also disperse passively, relying mainly on wind to colonize other sites. As a result, source-sink dynamics can arise simply because external agents dispersed protist propagules (e.g., cysts, spores), forcing individuals to grow in a poor habitat. In contrast, many organisms that disperse actively should have no reason to remain in a sink patch, provided the organisms are able to recognize it as a poor quality patch (see discussion of
ecological traps Ecological traps are scenarios in which rapid environmental change leads organisms to prefer to settle in poor-quality habitats. The concept stems from the idea that organisms that are actively selecting habitat must rely on environmental cues to h ...
). The reasoning behind this argument is that organisms are often expected to behave according to the " ideal free distribution", which describes a population in which individuals distribute themselves evenly among habitat patches according to how many individuals the patch can support. When there are patches of varying quality available, the ideal free distribution predicts a pattern of "balanced dispersal". In this model, when the preferred habitat patch becomes crowded enough that the average fitness (survival rate or reproductive success) of the individuals in the patch drops below the average fitness in a second, lower quality patch, individuals are expected to move to the second patch. However, as soon as the second patch becomes sufficiently crowded, individuals are expected to move back to the first patch. Eventually, the patches should become balanced so that the average fitness of the individuals in each patch and the rates of dispersal between the two patches are even. In this balanced dispersal model, the probability of leaving a patch is inversely proportional to the carrying capacity of the patch. In this case, individuals should not remain in sink habitat for very long, where the carrying capacity is zero and the probability of leaving is therefore very high. An alternative to the ideal free distribution and balanced dispersal models is when fitness can vary among potential breeding sites within habitat patches and individuals must select the best available site. This alternative has been called the "ideal preemptive distribution", because a breeding site can be preempted if it has already been occupied. For example, the dominant, older individuals in a population may occupy all of the best territories in the source so that the next best territory available may be in the sink. As the subordinate, younger individuals age, they may be able to take over territories in the source, but new subordinate juveniles from the source will have to move to the sink. Pulliam argued that such a pattern of dispersal can maintain a large sink population indefinitely. Furthermore, if good breeding sites in the source are rare and poor breeding sites in the sink are common, it is even possible that the majority of the population resides in the sink.


Importance in ecology

The source-sink model of population dynamics has made contributions to many areas in ecology. For example, a species'
niche Niche may refer to: Science *Developmental niche, a concept for understanding the cultural context of child development *Ecological niche, a term describing the relational position of an organism's species *Niche differentiation, in ecology, the ...
was originally described as the environmental factors required by a species to carry out its life history, and a species was expected to be found only in areas that met these niche requirements. This concept of a niche was later termed the "fundamental niche", and described as all of the places a species could successfully occupy. In contrast, the "realized niche", was described as all of the places a species actually did occupy, and was expected to be less than the extent of the fundamental niche as a result of competition with other species. However, the source-sink model demonstrated that the majority of a population could occupy a sink which, by definition, did not meet the niche requirements of the species, and was therefore outside the fundamental niche (see Figure 2). In this case, the realized niche was actually larger than the fundamental niche, and ideas about how to define a species' niche had to change. Source–sink dynamics has also been incorporated into studies of
metapopulation A metapopulation consists of a group of spatially separated populations of the same species which interact at some level. The term metapopulation was coined by Richard Levins in 1969 to describe a model of population dynamics of insect pests in ...
s, a group of populations residing in patches of habitat. Though some patches may go extinct, the regional persistence of the metapopulation depends on the ability of patches to be re-colonized. As long as there are source patches present for successful reproduction, sink patches may allow the total number of individuals in the metapopulation to grow beyond what the source could support, providing a reserve of individuals available for re-colonization. Source–sink dynamics also has implications for studies of the coexistence of species within habitat patches. Because a patch that is a source for one species may be a sink for another, coexistence may actually depend on immigration from a second patch rather than the interactions between the two species. Similarly, source-sink dynamics may influence the regional coexistence and demographics of species within a
metacommunity An ecological metacommunity is a set of interacting communities which are linked by the dispersal of multiple, potentially interacting species. The term is derived from the field of community ecology, which is primarily concerned with patterns of ...
, a group of communities connected by the dispersal of potentially interacting species. Finally, the source-sink model has greatly influenced ecological trap theory, a model in which organisms prefer sink habitat over source habitat. Besides being ecological trap sink habitat may vary in their response i major disturbance and colonization of sink habitat may allow species survival even if population in source habitat extinct due to some catastrophic event which may substantially increase metapopulational stability.


Conservation

Land managers and conservationists have become increasingly interested in preserving and restoring high quality habitat, particularly where rare, threatened, or endangered species are concerned. As a result, it is important to understand how to identify or create high quality habitat, and how populations respond to habitat loss or change. Because a large proportion of a species' population could exist in sink habitat, conservation efforts may misinterpret the species' habitat requirements. Similarly, without considering the presence of a trap, conservationists might mistakenly preserve trap habitat under the assumption that an organism's preferred habitat was also good quality habitat. Simultaneously, source habitat may be ignored or even destroyed if only a small proportion of the population resides there. Degradation or destruction of the source habitat will, in turn, impact the sink or trap populations, potentially over large distances. Finally, efforts to restore degraded habitat may unintentionally create an ecological trap by giving a site the appearance of quality habitat, but which has not yet developed all of the functional elements necessary for an organism's survival and reproduction. For an already threatened species, such mistakes might result in a rapid population decline toward extinction. In considering where to place reserves, protecting source habitat is often assumed to be the goal, although if the cause of a sink is human activity, simply designating an area as a reserve has the potential to convert current sink patches to source patches (e.g. no-take zones). Either way, determining which areas are sources or sinks for any one species may be very difficult, and an area that is a source for one species may be unimportant to others. Finally, areas that are sources or sinks currently may not be in the future as habitats are continually altered by human activity or climate change. Few areas can be expected to be universal sources, or universal sinks. While the presence of source, sink, or trap patches must be considered for short-term population survival, especially for very small populations, long-term survival may depend on the creation of networks of reserves that incorporate a variety of habitats and allow populations to interact.


See also

*
Ecological trap Ecological traps are scenarios in which rapid environmental change leads organisms to prefer to settle in poor-quality habitats. The concept stems from the idea that organisms that are actively selecting habitat must rely on environmental cues to h ...
*
Perceptual trap A perceptual trap is an ecological scenario in which environmental change, typically anthropogenic, leads an organism to avoid an otherwise high-quality habitat. The concept is related to that of an ecological trap, in which environmental change c ...
*
Conservation biology Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an int ...
*
Ecology Ecology () is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps wi ...
*
Landscape ecology Landscape ecology is the science of studying and improving relationships between ecological processes in the environment and particular ecosystems. This is done within a variety of landscape scales, development spatial patterns, and organizati ...
*
Metapopulation A metapopulation consists of a group of spatially separated populations of the same species which interact at some level. The term metapopulation was coined by Richard Levins in 1969 to describe a model of population dynamics of insect pests in ...
*
Population dynamics Population dynamics is the type of mathematics used to model and study the size and age composition of populations as dynamical systems. History Population dynamics has traditionally been the dominant branch of mathematical biology, which has ...
*
Population ecology Population ecology is a sub-field of ecology that deals with the dynamics of species populations and how these populations interact with the environment, such as birth and death rates, and by immigration and emigration. The discipline is importa ...
*
Population viability analysis Population viability analysis (PVA) is a species-specific method of risk assessment frequently used in conservation biology. It is traditionally defined as the process that determines the probability that a population will go extinct within a give ...
*
Refuge (ecology) A refuge is a concept in ecology, in which an organism obtains protection from predation by hiding in an area where it is inaccessible or cannot easily be found. Due to population dynamics, when refuges are available, populations of both predator ...
*
List of ecology topics The following Outline (list), outline is provided as an overview of and topical guide to ecology: Ecology – scientific study of the distribution and abundance of life, living organisms and how the distribution and abundance are affected b ...


References


Further reading

* * * * * * * {{DEFAULTSORT:Source-sink dynamics Landscape ecology Ecological theories Population Conservation biology Disease ecology Behavioral ecology Ecological connectivity