Somigliana Equation
   HOME

TheInfoList



OR:

In
geodesy Geodesy ( ) is the Earth science of accurately measuring and understanding Earth's figure (geometric shape and size), orientation in space, and gravity. The field also incorporates studies of how these properties change over time and equivale ...
and geophysics, theoretical gravity or normal gravity is an approximation of the true gravity on Earth's surface by means of a
mathematical model A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, ...
representing Earth. The most common model of a smoothed Earth is a rotating Earth ellipsoid of revolution (i.e., a spheroid).


Principles

The type of gravity model used for the Earth depends upon the degree of fidelity required for a given problem. For many problems such as aircraft simulation, it may be sufficient to consider gravity to be a constant, defined as: :g=g_= based upon data from ''World Geodetic System 1984'' ( WGS-84), where g is understood to be pointing 'down' in the local frame of reference. If it is desirable to model an object's weight on Earth as a function of latitude, one could use the following: :g=g_ - \tfrac(g_-g_) \cos\left(2\, \varphi \cdot \frac\right) where * g_ = * g_ = * g_ = * \varphi = latitude, between −90° and +90° Neither of these accounts for changes in gravity with changes in altitude, but the model with the cosine function does take into account the centrifugal relief that is produced by the rotation of the Earth. For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass center. When the rotational component is included (as above), the gravity at the equator is about 0.53% less than that at the poles, with gravity at the poles being unaffected by the rotation. So the rotational component of change due to latitude (0.35%) is about twice as significant as the mass attraction change due to latitude (0.18%), but both reduce strength of gravity at the equator as compared to gravity at the poles. Note that for satellites, orbits are decoupled from the rotation of the Earth so the orbital period is not necessarily one day, but also that errors can accumulate over multiple orbits so that accuracy is important. For such problems, the rotation of the Earth would be immaterial unless variations with longitude are modeled. Also, the variation in gravity with altitude becomes important, especially for highly elliptical orbits. The ''Earth Gravitational Model 1996'' ( EGM96) contains 130,676 coefficients that refine the model of the Earth's gravitational field. The most significant correction term is about two orders of magnitude more significant than the next largest term. That coefficient is referred to as the J_2 term, and accounts for the flattening of the poles, or the
oblateness Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is ...
, of the Earth. (A shape elongated on its axis of symmetry, like an American football, would be called prolate.) A gravitational potential function can be written for the change in potential energy for a unit mass that is brought from infinity into proximity to the Earth. Taking partial derivatives of that function with respect to a coordinate system will then resolve the directional components of the gravitational acceleration vector, as a function of location. The component due to the Earth's rotation can then be included, if appropriate, based on a sidereal day relative to the stars (≈366.24 days/year) rather than on a
solar Solar may refer to: Astronomy * Of or relating to the Sun ** Solar telescope, a special purpose telescope used to observe the Sun ** A device that utilizes solar energy (e.g. "solar panels") ** Solar calendar, a calendar whose dates indicate t ...
day (≈365.24 days/year). That component is perpendicular to the axis of rotation rather than to the surface of the Earth. A similar model adjusted for the geometry and gravitational field for Mars can be found in publication NASA SP-8010. The barycentric gravitational acceleration at a point in space is given by: :\mathbf=-\mathbf where: ''M'' is the mass of the attracting object, \scriptstyle \mathbf is the unit vector from center-of-mass of the attracting object to the center-of-mass of the object being accelerated, ''r'' is the distance between the two objects, and ''G'' is the
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
. When this calculation is done for objects on the surface of the Earth, or aircraft that rotate with the Earth, one has to account for the fact that the Earth is rotating and the centrifugal acceleration has to be subtracted from this. For example, the equation above gives the acceleration at 9.820 m/s2, when , and The centripetal radius is , and the centripetal time unit is approximately reduces this, for to 9.79379 m/s2, which is closer to the observed value.


Basic formulas

Various, successively more refined, formulas for computing the theoretical gravity are referred to as the International Gravity Formula, the first of which was proposed in 1930 by the International Association of Geodesy. The general shape of that formula is: :g(\phi)= g_e\left( 1 + A \sin^2(\phi) - B \sin^2(2 \phi) \right), in which (''φ'') is the gravity as a function of the
geographic latitude In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pole ...
''φ'' of the position whose gravity is to be determined, g_e denotes the gravity at the equator (as determined by measurement), and the coefficients and are parameters that must be selected to produce a good global fit to true gravity. Using the values of the GRS80 reference system, a commonly used specific instantiation of the formula above is given by: :g(\phi)= 9.780327 \left(1+0.0053024\sin^2(\phi) - 0.0000058\sin^2(2 \phi) \right)\,\mathrm^. Using the appropriate
double-angle formula In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involvi ...
in combination with the
Pythagorean identity The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations be ...
, this can be rewritten in the equivalent forms :\beging(\phi)&= 9.780327 \left(1+0.0052792\sin^2(\phi)+0.0000232\sin^4(\phi)\right)\,\mathrm^,\\ &=9.780327\left(1.0053024-.0053256\cos^2(\phi)+.0000232\cos^4(\phi)\right)\,\mathrm^,\\ &=9.780327\left(1.0026454-0.0026512\cos(2\phi)+ .0000058\cos^2(2\phi)\right)\,\mathrm^ .\end\,\! Up to the 1960s, formulas based on the Hayford ellipsoid (1924) and of the famous German geodesist Helmert (1906) were often used. The difference between the semi-major axis (equatorial radius) of the Hayford ellipsoid and that of the modern WGS84 ellipsoid is ; for Helmert's ellipsoid it is only .


Somigliana equation

A more recent theoretical formula for gravity as a function of latitude is the International Gravity Formula 1980 (IGF80), also based on the WGS80 ellipsoid but now using the Somigliana equation (after
Carlo Somigliana Carlo Somigliana (20 September 1860 – 20 June 1955) was an Italian mathematician and a classical mathematical physicist, faithful member of the school of Enrico Betti and Eugenio Beltrami. He made important contributions to linear elasticity: ...
(1860–1955)): :g(\phi)=g_e\left frac\right\,\! where,''Department of Defense World Geodetic System 1984 — Its Definition and Relationships with Local Geodetic Systems'',NIMA TR8350.2, 3rd ed., Tbl. 3.4, Eq. 4-1
/ref> *k=\frac (formula constant); *g_e,g_p is the defined gravity at the equator and poles, respectively; *a,b are the equatorial and polar semi-axes, respectively; *e^2=\frac is the spheroid's squared eccentricity; providing, :g(\phi)= 9.78032677153489285793\left frac\right,\mathrm^. A later refinement, based on the WGS84 ellipsoid, is the WGS ( World Geodetic System) 1984 Ellipsoidal Gravity Formula: :g(\phi)=9.780325335903891718546\left frac\right\,\mathrm^. (where g_p = 9.83218493786340046183 ms−2, ''a'' = exactly 6378137 m and ''b'' \simeq 6356752.31424517949756 m) The difference with IGF80 is insignificant when used for geophysical purposes, but may be significant for other uses.


Further details

For the normal gravity \gamma_0 of the sea level ellipsoid, i.e., elevation ''h'' = 0, this formula by Somigliana (1929) applies: :\gamma_0(\varphi) = \frac with * \gamma_a = Normal gravity at Equator * \gamma_b = Normal gravity at Poles * ''a'' =
semi-major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the long ...
(Equator radius) * ''b'' = semi-minor axis (Pole radius) * \varphi = latitude Due to numerical issues, the formula is simplified to this: :\gamma_0 (\varphi) = \gamma_a \cdot \frac with * p = \frac - 1 * e^2 = 1 - \frac; \quad(''e'' is the eccentricity) For the Geodetic Reference System 1980 (GRS 80) the parameters are set to these values: :a = 6\,378\,137 \, \mathrm \quad \quad \quad \quad b = 6\,356\,752314\,140\,347\, \mathrm : \gamma_a = 9780\,326\,771\,5 \, \mathrm \quad \gamma_b = 9832\,186\,368\,5 \, \mathrm \Rightarrow p = 1931\,851\,353\,260 \cdot 10^ \quad e^2 = 6694\,380\,022\,90 \cdot 10^


Approximation formula from series expansions

The Somigliana formula was approximated through different series expansions, following this scheme: :\gamma_0(\varphi) = \gamma_a \cdot (1 + \beta \cdot \sin^2 \varphi + \beta_1 \cdot \sin^2 2\varphi + \dots)


International gravity formula 1930

The normal gravity formula by Gino Cassinis was determined in 1930 by International Union of Geodesy and Geophysics as international gravity formula along with Hayford ellipsoid. The parameters are: :\gamma_a = 978049 \frac \quad \beta = 52884 \cdot 10^ \quad \beta_1 = -59 \cdot 10^ In the course of time the values were improved again with newer knowledge and more exact measurement methods. Harold Jeffreys improved the values in 1948 at: :\gamma_a = 9780373 \frac \quad \beta = 52891 \cdot 10^ \quad \beta_1 = -59 \cdot 10^


International gravity formula 1967

The normal gravity formula of Geodetic Reference System 1967 is defined with the values: :\gamma_a = 9780318 \frac \quad \beta = 53024 \cdot 10^ \quad \beta_1 = -59 \cdot 10^


International gravity formula 1980

From the parameters of GRS 80 comes the classic series expansion: :\gamma_a = 9780327 \frac \quad \beta = 53024 \cdot 10^ \quad \beta_1 = -58 \cdot 10^ The accuracy is about ±10−6 m/s2. With GRS 80 the following series expansion is also introduced: :\gamma_0(\varphi) = \gamma_a \cdot (1 + c_1 \cdot \sin^2 \varphi + c_2 \cdot \sin^4 \varphi + c_3 \cdot \sin^6 \varphi + c_4 \cdot \sin^8\varphi + \dots) As such the parameters are: * ''c''1 = 5.279 0414·10−3 * ''c''2 = 2.327 18·10−5 * ''c''3 = 1.262·10−7 * ''c''4 = 7·10−10 The accuracy is at about ±10−9 m/s2 exact. When the exactness is not required, the terms at further back can be omitted. But it is recommended to use this finalized formula.


Height dependence

Cassinis determined the height dependence, as: : g(\varphi, h) = g_0(\varphi) - \left( 308 \cdot 10^ \, \frac - 419 \cdot 10^ \, \frac \cdot \rho \right) \cdot h The average rock density ρ is no longer considered. Since GRS 1967 the dependence on the ellipsoidal elevation ''h'' is: :\begin g(\varphi, h) & = g_0(\varphi) - \left( 1 - 139 \cdot 10^ \cdot \sin^2(\varphi) \right) \cdot 30877 \cdot 10^ \, \frac \cdot h + 72 \cdot 10^ \, \frac \cdot h^2\\ & = g_0(\varphi) - \left( 30877 \cdot 10^ - 43 \cdot 10^ \cdot \sin^2(\varphi) \right) \, \frac \cdot h + 72 \cdot 10^ \, \frac \cdot h^2 \end Another expression is: :g(\varphi,h) = g_0(\varphi) \cdot (1 - (k_1 - k_2 \cdot \sin^2 \varphi) \cdot h + k_3 \cdot h^2) with the parameters derived from GSR80: * k_1 = 2 \cdot (1 + f + m) / a = 3157\,04\cdot10^ \, \mathrm * k_2 = 4 \cdot f / a = 2102\,69\cdot10^ \, \mathrm * k_3 = 3 / (a^2) = 7374\,52\cdot10^ \, \mathrm This adjustment is about right for common heights in Aviation; But for heights up to outer space (over ca. 100 kilometers) it is out of range.


WELMEC formula

In all German standards offices the free-fall acceleration ''g'' is calculated in respect to the average latitude φ and the average height above sea level ''h'' with the WELMEC–Formel: :g(\varphi, h) = \left( 1 + 00053024 \cdot \sin^2(\varphi) - 00000058 \cdot \sin^2(2 \varphi) \right) \cdot 9780318 \frac - 0000003085 \, \frac \cdot h The formula is based on the International gravity formula from 1967. The scale of free-fall acceleration at a certain place must be determined with precision measurement of several mechanical magnitudes. Weighing scales, the mass of which does measurement because of the weight, relies on the free-fall acceleration, thus for use they must be prepared with different constants in different places of use. Through the concept of so-called gravity zones, which are divided with the use of normal gravity, a weighing scale can be calibrated by the manufacturer before use. 700kB


Example

'' Free-fall acceleration in Schweinfurt:'' ''Data:'' * Latitude: 50° 3′ 24″ = 50.0567° * Height above sea level: 229.7 m * Density of the rock plates: ca. 2.6 g/cm3 * Measured free-fall acceleration: g = 9.8100 ± 0.0001 m/s2 ''Free-fall acceleration, calculated through normal gravity formulas:'' * Cassinis: ''g'' = 9.81038 m/s2 * Jeffreys: ''g'' = 9.81027 m/s2 * WELMEC: ''g'' = 9.81004 m/s2


See also

* Gravity anomaly *
Reference ellipsoid An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations ...
* EGM96 (Earth Gravitational Model 1996) *
Standard gravity The standard acceleration due to gravity (or standard acceleration of free fall), sometimes abbreviated as standard gravity, usually denoted by or , is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. ...
: 9.806 65 m/s2


References


Further reading

* Karl Ledersteger: ''Astronomische und physikalische Geodäsie''. Handbuch der Vermessungskunde Band 5, 10. Auflage. Metzler, Stuttgart 1969 * B.Hofmann-Wellenhof, Helmut Moritz: ''Physical Geodesy'', , Springer-Verlag Wien 2006. *
Wolfgang Torge Wolfgang is a German name, German male given name traditionally popular in Germany, Austria and Switzerland. The name is a combination of the Old High German words ''wikt:wolf#Old High German, wolf'', meaning "wolf", and ''wikt:gang#Old High Germa ...
: ''Geodäsie''. 2. Auflage. Walter de Gruyter, Berlin u.a. 2003. *
Wolfgang Torge Wolfgang is a German name, German male given name traditionally popular in Germany, Austria and Switzerland. The name is a combination of the Old High German words ''wikt:wolf#Old High German, wolf'', meaning "wolf", and ''wikt:gang#Old High Germa ...
: ''Geodäsie''. Walter de Gruyter, Berlin u.a. 1975


External links

*
Definition des Geodetic Reference System 1980 (GRS80)
' (pdf, engl.; 70 kB)
Gravity Information System
der Physikalisch-Technischen Bundesanstalt, engl.
Online-Berechnung der Normalschwere mit verschiedenen Normalschwereformeln
Gravimetry Geodesy Geophysics {{geodesy-stub