
In
astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
, a corona (: coronas or coronae) is the outermost layer of a
star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
's
atmosphere
An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
. It is a hot but relatively
dim region of
plasma populated by intermittent coronal structures such as
prominences,
coronal loops, and
helmet streamers.
The
Sun
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
's corona lies above the
chromosphere
A chromosphere ("sphere of color", from the Ancient Greek words χρῶμα (''khrôma'') 'color' and σφαῖρα (''sphaîra'') 'sphere') is the second layer of a Stellar atmosphere, star's atmosphere, located above the photosphere and below t ...
and extends millions of kilometres into outer space. Coronal light is typically obscured by
diffuse sky radiation
Diffuse sky radiation is solar radiation reaching the Earth's surface after having been scattering, scattered from the direct solar beam by molecules or particulates in the Earth's atmosphere, atmosphere. It is also called sky radiation, the ...
and
glare from the solar disk, but can be easily seen by the naked eye during a total
solar eclipse
A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of Earth, totally or partially. Such an alignment occurs approximately every six months, during the eclipse season i ...
or with a specialized
coronagraph.
Spectroscopic measurements indicate strong
ionization
Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive Electric charge, charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged at ...
in the corona and a plasma temperature in excess of ,
[
] much hotter than the surface of the Sun, known as the
photosphere
The photosphere is a star's outer shell from which light is radiated. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately , or equivalently, a depth from which 50% of light will esc ...
.
is, in turn, derived .
History

In 1724, French-Italian astronomer
Giacomo F. Maraldi recognized that the aura visible during a
solar eclipse
A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of Earth, totally or partially. Such an alignment occurs approximately every six months, during the eclipse season i ...
belongs to the Sun, not to the
Moon
The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
. In 1809, Spanish astronomer
José Joaquín de Ferrer coined the term 'corona'. Based on his own observations of the 1806 solar eclipse at Kinderhook (New York), de Ferrer also proposed that the corona was part of the Sun and not of the Moon. English astronomer
Norman Lockyer identified the first element unknown on Earth in the Sun's chromosphere, which was called
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
(from
Greek
Greek may refer to:
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group
*Greek language, a branch of the Indo-European language family
**Proto-Greek language, the assumed last common ancestor of all kno ...
'sun'). French astronomer
Jules Jenssen noted, after comparing his readings between the 1871 and 1878 eclipses, that the size and shape of the corona changes with the
sunspot cycle. In 1930,
Bernard Lyot invented the
"coronograph" (now "coronagraph"), which allows viewing the corona without a total eclipse. In 1952, American astronomer
Eugene Parker proposed that the solar corona might be heated by myriad tiny 'nanoflares', miniature brightenings resembling
solar flares
A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Stellar atmosphere, Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar partic ...
that would occur all over the surface of the Sun.
Historical theories
The high temperature of the Sun's corona gives it unusual
spectral features, which led some in the 19th century to suggest that it contained a previously unknown element, "
coronium". Instead, these spectral features have since been explained by
highly ionized iron
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
(Fe-XIV, or Fe
13+).
Bengt Edlén, following the work of
Walter Grotrian in 1939, first identified the coronal spectral lines in 1940 (observed since 1869) as transitions from low-lying
metastable
In chemistry and physics, metastability is an intermediate energetic state within a dynamical system other than the system's state of least energy.
A ball resting in a hollow on a slope is a simple example of metastability. If the ball is onl ...
levels of the ground configuration of highly ionised metals (the green Fe-XIV line from Fe
13+ at , but also the red Fe-X line from Fe
9+ at ).
Observable components
The solar corona has three recognized, and distinct, sources of light that occupy the same volume: the "F-corona" (for "Fraunhofer"), the "K-corona" (for "Kontinuierlich"), and the "E-corona" (for "emission").
The "F-corona" is named for the
Fraunhofer spectrum of absorption lines in ordinary sunlight, which are preserved by reflection off small material objects. The F-corona is faint near the Sun itself, but drops in brightness only gradually far from the Sun, extending far across the sky and becoming the
zodiacal light. The F-corona is recognized to arise from small dust grains orbiting the Sun; these form a tenuous cloud that extends through much of the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
.
The "K-corona" is named for the fact that its spectrum is a continuum, with no major spectral features. It is sunlight that is
Thomson-scattered by free electrons in the
hot plasma of the Sun's outer atmosphere. The continuum nature of the spectrum arises from
Doppler broadening of the Sun's Fraunhofer absorption lines in the reference frame of the (hot and therefore fast-moving) electrons. Although the K-corona is a phenomenon of the electrons in the plasma, the term is frequently used to describe the plasma itself (as distinct from the dust that gives rise to the F-corona).
The "E-corona" is the component of the corona with an
emission-line spectrum, either inside or outside the wavelength band of visible light. It is a phenomenon of the ion component of the plasma, as individual ions are excited by collision with other ions or electrons, or by absorption of ultraviolet light from the Sun.
Physical features

The Sun's corona is much hotter (by a factor from 150 to 450) than the visible surface of the Sun: the corona's temperature is 1 to 3 million
kelvin
The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
compared to the
photosphere
The photosphere is a star's outer shell from which light is radiated. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately , or equivalently, a depth from which 50% of light will esc ...
's average temperature – around . The corona is far less dense than the photosphere, and produces about one-millionth as much visible light. The corona is separated from the photosphere by the relatively shallow
chromosphere
A chromosphere ("sphere of color", from the Ancient Greek words χρῶμα (''khrôma'') 'color' and σφαῖρα (''sphaîra'') 'sphere') is the second layer of a Stellar atmosphere, star's atmosphere, located above the photosphere and below t ...
. The exact mechanism by which the corona is heated is still the subject of some debate, but likely possibilities include episodic energy releases from the pervasive
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
and
magnetohydrodynamic waves from below. The outer edges of the Sun's corona are constantly being transported away, creating the "open" magnetic flux entrained in the
solar wind
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
.
The corona is not always evenly distributed across the surface of the Sun. During periods of quiet, the corona is more or less confined to the
equator
The equator is the circle of latitude that divides Earth into the Northern Hemisphere, Northern and Southern Hemisphere, Southern Hemispheres of Earth, hemispheres. It is an imaginary line located at 0 degrees latitude, about in circumferen ...
ial regions, with
coronal hole
Coronal holes are regions of the Sun's corona that emit low levels of ultraviolet and X-ray radiation compared to their surroundings. They are composed of relatively cool and tenuous plasma (physics), plasma permeated by magnetic fields that are o ...
s covering the
polar regions. However, during the Sun's active periods, the corona is evenly distributed over the equatorial and polar regions, though it is most prominent in areas with
sunspot
Sunspots are temporary spots on the Sun's surface that are darker than the surrounding area. They are one of the most recognizable Solar phenomena and despite the fact that they are mostly visible in the solar photosphere they usually aff ...
activity. The
solar cycle
The Solar cycle, also known as the solar magnetic activity cycle, sunspot cycle, or Schwabe cycle, is a periodic 11-year change in the Sun's activity measured in terms of Modern Maximum, variations in the number of observed sunspots on the Sun ...
spans approximately 11 years, from one
solar minimum to the following minimum. Since the solar magnetic field is continually wound up due to the faster rotation of mass at the Sun's equator (
differential rotation
Differential rotation is seen when different parts of a rotating object move with different angular velocities (or rates of rotation) at different latitudes and/or depths of the body and/or in time. This indicates that the object is not rigi ...
), sunspot activity is more pronounced at
solar maximum
Solar maximum is the regular period of greatest solar activity during the Sun's 11-year solar cycle. During solar maximum, large numbers of sunspots appear, and the solar irradiance output grows by about 0.07%. On average, the solar cycle take ...
where the
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
is more twisted. Associated with sunspots are
coronal loops, loops of
magnetic flux, upwelling from the solar interior. The magnetic flux pushes the hotter photosphere aside, exposing the cooler plasma below, thus creating the relatively dark sun spots.
High-resolution X-ray images of the Sun's corona photographed by
Skylab
Skylab was the United States' first space station, launched by NASA, occupied for about 24 weeks between May 1973 and February 1974. It was operated by three trios of astronaut crews: Skylab 2, Skylab 3, and Skylab 4. Skylab was constructe ...
in 1973, by
Yohkoh in 1991–2001, and by subsequent space-based instruments revealed the structure of the corona to be quite varied and complex, leading astronomers to classify various zones on the coronal disc.
Astronomers usually distinguish several regions,
as described below.
Active regions
Active regions are ensembles of loop structures connecting points of opposite magnetic polarity in the photosphere, the so-called coronal loops. They generally distribute in two zones of activity, which are parallel to the solar equator. The average temperature is between two and four million kelvin, while the density goes from 10
9 to 10
10 particles per cubic centimetre.
Active regions involve all the phenomena directly linked to the magnetic field, which occur at different heights above the Sun's surface:
sunspots and
faculae occur in the photosphere;
spicules,
Hα filaments and
plages in the chromosphere; prominences in the chromosphere and transition region; and
flares
A flare, also sometimes called a fusée, fusee, or bengala, bengalo in several European countries, is a type of pyrotechnic that produces a bright light or intense heat without an explosion. Flares are used for distress signaling, illuminatio ...
and
coronal mass ejection
A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understandin ...
s (CME) happen in the corona and chromosphere. If flares are very violent, they can also perturb the photosphere and generate a
Moreton wave. On the contrary, quiescent prominences are large, cool, dense structures which are observed as dark, "snake-like" Hα ribbons (appearing like filaments) on the solar disc. Their temperature is about –, and so they are usually considered as chromospheric features.
In 2013, images from the
High Resolution Coronal Imager revealed never-before-seen "magnetic braids" of plasma within the outer layers of these active regions.
Coronal loops

Coronal loops are the basic structures of the magnetic solar corona. These loops are the closed-magnetic flux cousins of the open-magnetic flux that can be found in coronal holes and the solar wind. Loops of magnetic flux well up from the solar body and fill with hot solar plasma. Due to the heightened magnetic activity in these coronal loop regions, coronal loops can often be the precursor to solar flares and CMEs.
The solar plasma that feeds these structures is heated from under to well over 10
6 K from the photosphere, through the transition region, and into the corona. Often, the solar plasma will fill these loops from one point and drain to another, called foot points (
siphon
A siphon (; also spelled syphon) is any of a wide variety of devices that involve the flow of liquids through tubes. In a narrower sense, the word refers particularly to a tube in an inverted "U" shape, which causes a liquid to flow upward, abo ...
flow due to a pressure difference, or asymmetric flow due to some other driver).
When the plasma rises from the foot points towards the loop top, as always occurs during the initial phase of a compact flare, it is defined as chromospheric evaporation. When the plasma rapidly cools and falls toward the photosphere, it is called chromospheric condensation. There may also be
symmetric
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
flow from both loop foot points, causing a build-up of mass in the loop structure. The plasma may cool rapidly in this region (for a thermal instability), its dark filaments obvious against the solar disk or prominences off the
Sun's limb.
Coronal loops may have lifetimes in the order of seconds (in the case of flare events), minutes, hours or days. Where there is a balance in loop energy sources and sinks, coronal loops can last for long periods of time and are known as ''
steady state
In systems theory, a system or a process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those properties ''p' ...
'' or ''
quiescent'' coronal loops (
example
Example may refer to:
* ''exempli gratia'' (e.g.), usually read out in English as "for example"
* .example, reserved as a domain name that may not be installed as a top-level domain of the Internet
** example.com, example.net, example.org, an ...
).
Coronal loops are very important to our understanding of the current ''coronal heating problem''. Coronal loops are highly radiating sources of plasma and are therefore easy to observe by instruments such as ''
TRACE''. An explanation of the coronal heating problem remains as these structures are being observed remotely, where many ambiguities are present (i.e., radiation contributions along the
line-of-sight propagation
Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves can only travel in a direct visual path from the source to the receiver without obstacles. Electromagnetic transmission in ...
). ''
In-situ
is a Latin phrase meaning 'in place' or 'on site', derived from ' ('in') and ' ( ablative of ''situs'', ). The term typically refers to the examination or occurrence of a process within its original context, without relocation. The term is use ...
'' measurements are required before a definitive answer can be determined, but due to the high plasma temperatures in the corona, ''in-situ'' measurements are, at present, impossible. The next mission of the NASA
Parker Solar Probe will approach the Sun very closely, allowing more direct observations.
Large-scale structures
Large-scale structures are very long arcs which can cover over a quarter of the solar disk but contain plasma less dense than in the coronal loops of the active regions.
They were first detected in the June 8, 1968, flare observation during a rocket flight.
The large-scale structure of the corona changes over the 11-year solar cycle and becomes particularly simple during the minimum period, when the magnetic field of the Sun is almost similar to a dipolar configuration (plus a quadrupolar component).
Interconnections of active regions
The interconnections of active regions are arcs connecting zones of opposite magnetic field, of different active regions. Significant variations of these structures are often seen after a flare.
Some other features of this kind are
helmet streamers – large, cap-like coronal structures with long, pointed peaks that usually overlie sunspots and active regions. Coronal streamers are considered to be sources of the slow solar wind.
Filament cavities

Filament cavities are zones which look dark in the X-rays and are above the regions where Hα filaments are observed in the chromosphere. They were first observed in the two 1970 rocket flights which also detected ''coronal holes''.
Filament cavities are cooler clouds of plasma suspended above the Sun's surface by magnetic forces. The regions of intense magnetic field look dark in images because they are empty of hot plasma. In fact, the sum of the
magnetic pressure and plasma pressure must be constant everywhere on the
heliosphere in order to have an equilibrium configuration: where the magnetic field is higher, the plasma must be cooler or less dense. The plasma pressure
can be calculated by the
state equation of a perfect gas:
, where
is the
particle number density,
the
Boltzmann constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
and
the plasma temperature. It is evident from the equation that the plasma pressure lowers when the plasma temperature decreases with respect to the surrounding regions or when the zone of intense magnetic field empties. The same physical effect renders sunspots apparently dark in the photosphere.
Bright points
Bright points are small active regions found on the solar disk. X-ray bright points were first detected on April 8, 1969, during a rocket flight.
The fraction of the solar surface covered by bright points varies with the solar cycle. They are associated with small bipolar regions of the magnetic field. Their average temperature ranges from 1.1 MK to 3.4 MK. The variations in temperature are often correlated with changes in the X-ray emission.
Coronal holes
Coronal holes are unipolar regions which look dark in the X-rays since they do not emit much radiation. These are wide zones of the Sun where the magnetic field is unipolar and opens towards the interplanetary space. The high speed solar wind arises mainly from these regions.
In the UV images of the coronal holes, some small structures, similar to elongated bubbles, are often seen as they were suspended in the solar wind. These are the coronal plumes. More precisely, they are long thin streamers that project outward from the Sun's north and south poles.
The quiet Sun
The solar regions which are not part of active regions and coronal holes are commonly identified as the quiet Sun.
The equatorial region has a faster rotation speed than the polar zones. The result of the Sun's differential rotation is that the active regions always arise in two bands parallel to the equator and their extension increases during the periods of maximum of the solar cycle, while they almost disappear during each minimum. Therefore, the quiet Sun always coincides with the equatorial zone and its surface is less active during the maximum of the solar cycle. Approaching the minimum of the solar cycle (also named butterfly cycle), the extension of the quiet Sun increases until it covers the whole disk surface excluding some bright points on the hemisphere and the poles, where there are coronal holes.
Alfvén surface
The
Alfvén surface is the boundary separating the corona from the
solar wind
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
defined as where the coronal plasma's
Alfvén speed and the large-scale solar wind speed are equal.
Researchers were unsure exactly where the Alfvén critical surface of the Sun lay. Based on remote images of the corona, estimates had put it somewhere between 10 and 20 solar radii from the surface of the Sun. On April 28, 2021, during its eighth flyby of the Sun, NASA's
Parker Solar Probe encountered the specific magnetic and particle conditions at 18.8 solar radii that indicated that it penetrated the Alfvén surface.
Variability of the corona
A portrait, as diversified as the one already pointed out for the coronal features, is emphasized by the analysis of the dynamics of the main structures of the corona, which evolve at differential times. Studying coronal variability in its complexity is not easy because the times of evolution of the different structures can vary considerably: from seconds to several months. The typical sizes of the regions where coronal events take place vary in the same way, as it is shown in the following table.
Flares

Flares take place in active regions and are characterized by a sudden increase of the radiative flux emitted from small regions of the corona. They are very complex phenomena, visible at different wavelengths; they involve several zones of the solar atmosphere and many physical effects, thermal and not thermal, and sometimes wide reconnections of the magnetic field lines with material expulsion.
Flares are impulsive phenomena, of average duration of 15 minutes, and the most energetic events can last several hours. Flares produce a high and rapid increase of the density and temperature.
An emission in white light is only seldom observed: usually, flares are only seen at extreme UV wavelengths and into the X-rays, typical of the chromospheric and coronal emission.
In the corona, the morphology of flares is described by observations in the UV, soft and hard X-rays, and in Hα wavelengths, and is very complex. However, two kinds of basic structures can be distinguished:
* ''Compact flares'', when each of the two arches where the event is happening maintains its morphology: only an increase of the emission is observed without significant structural variations. The emitted energy is of the order of 10
22 – 10
23 J.
* ''Flares of long duration'', associated with eruptions of prominences, transients in white light and ''two-ribbon flares'': in this case the magnetic loops change their configuration during the event. The energies emitted during these flares are of such great proportion they can reach 10
25 J.

As for temporal dynamics, three different phases are generally distinguished, whose duration are not comparable. The durations of those periods depend on the range of wavelengths used to observe the event:
* ''An initial impulsive phase'', whose duration is on the order of minutes, strong emissions of energy are often observed even in the microwaves, EUV wavelengths and in the hard X-ray frequencies.
* ''A maximum phase''
* ''A decay phase'', which can last several hours.
Sometimes also a phase preceding the flare can be observed, usually called as "pre-flare" phase.
Coronal mass ejections
Often accompanying large solar flares and prominences are coronal mass ejections (CME). These are enormous emissions of coronal material and magnetic field that travel outward from the Sun at up to 3000 km/s,
containing roughly 10 times the energy of the solar flare or prominence that accompanies them. Some larger CMEs can propel hundreds of millions of tons of material into
interplanetary space at roughly 1.5 million kilometers an hour.
Stellar coronae
Coronal stars are ubiquitous among the stars in the cool half of the
Hertzsprung–Russell diagram.
These coronae can be detected using
X-ray telescopes. Some stellar coronae, particularly in young stars, are much more luminous than the Sun's. For example,
FK Comae Berenices is the prototype for the FK Com class of
variable star
A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes systematically with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are ...
. These are giants of spectral types G and K with an unusually rapid rotation and signs of extreme activity. Their X-ray coronae are among the most luminous (''L''
x ≥ 10
32 erg·s
−1 or 10
25W) and the hottest known with dominant temperatures up to 40 MK.
[
The astronomical observations planned with the Einstein Observatory by Giuseppe Vaiana and his group] showed that F-, G-, K- and M-stars have chromospheres and often coronae much like the Sun.
The ''O-B stars'', which do not have surface convection zones, have a strong X-ray emission. However these stars do not have coronae, but the outer stellar envelopes emit this radiation during shocks due to thermal instabilities in rapidly moving gas blobs.
Also A-stars do not have convection zones but they do not emit at the UV and X-ray wavelengths. Thus they appear to have neither chromospheres nor coronae.
Physics of the corona
The matter in the external part of the solar atmosphere is in the state of plasma, at very high temperature (a few million kelvin) and at very low density (of the order of 1015 particles/m3).
According to the definition of plasma, it is a quasi-neutral ensemble of particles which exhibits a collective behaviour.
The composition is similar to that in the Sun's interior, mainly hydrogen, but with much greater ionization of its heavier elements than that found in the photosphere. Heavier metals, such as iron, are partially ionized and have lost most of the external electrons. The ionization state of a chemical element depends strictly on the temperature and is regulated by the Saha equation in the lowest atmosphere, but by collisional equilibrium in the optically thin corona. Historically, the presence of the spectral lines emitted from highly ionized states of iron allowed determination of the high temperature of the coronal plasma, revealing that the corona is much hotter than the internal layers of the chromosphere.
The corona behaves like a gas which is very hot but very light at the same time: the pressure in the corona is usually only 0.1 to 0.6 Pa in active regions, while on the Earth the atmospheric pressure is about 100 kPa, approximately a million times higher than on the solar surface. However it is not properly a gas, because it is made of charged particles, basically protons and electrons, moving at different velocities. Supposing that they have the same kinetic energy on average
(for the equipartition theorem
In classical physics, classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energy, energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, ...
), electrons have a mass roughly times smaller than protons, therefore they acquire more velocity. Metal ions are always slower. This fact has relevant physical consequences either on radiative processes (that are very different from the photospheric radiative processes), or on thermal conduction.
Furthermore, the presence of electric charges induces the generation of electric currents and high magnetic fields.
Magnetohydrodynamic waves (MHD waves) can also propagate in this plasma, even though it is still not clear how they can be transmitted or generated in the corona.
Radiation
Coronal plasma is optically thin and therefore transparent to the electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
that it emits and to that coming from lower layers. The plasma is very rarefied and the photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
mean free path
In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
overcomes by far all the other length-scales, including the typical sizes of common coronal features.
Electromagnetic radiation from the corona has been identified coming from three main sources, located in the same volume of space:
* The K-corona (K for , "continuous" in German) is created by sunlight Thomson scattering off free electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s; doppler broadening of the reflected photospheric absorption lines spreads them so greatly as to completely obscure them, giving the spectral appearance of a continuum with no absorption lines.
* The F-corona (F for Fraunhofer) is created by sunlight bouncing off dust particles, and is observable because its light contains the Fraunhofer absorption lines that are seen in raw sunlight; the F-corona extends to very high elongation angles from the Sun, where it is called the zodiacal light.
* The E-corona (E for emission) is due to spectral emission lines produced by ions that are present in the coronal plasma; it may be observed in broad or forbidden or hot spectral emission lines and is the main source of information about the corona's composition.[
]
Thermal conduction
In the corona thermal conduction
Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy ...
occurs from the external hotter atmosphere towards the inner cooler layers. Responsible for the diffusion process of the heat are the electrons, which are much lighter than ions and move faster, as explained above.
When there is a magnetic field the thermal conductivity
The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1.
Heat transfer occurs at a lower rate in materials of low ...
of the plasma becomes higher in the direction which is parallel to the field lines rather than in the perpendicular direction.
A charged particle moving in the direction perpendicular to the magnetic field line is subject to the Lorentz force
In electromagnetism, the Lorentz force is the force exerted on a charged particle by electric and magnetic fields. It determines how charged particles move in electromagnetic environments and underlies many physical phenomena, from the operation ...
which is normal to the plane individuated by the velocity and the magnetic field. This force bends the path of the particle. In general, since particles also have a velocity component along the magnetic field line, the Lorentz force constrains them to bend and move along spirals around the field lines at the cyclotron
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
frequency.
If collisions between the particles are very frequent, they are scattered in every direction. This happens in the photosphere, where the plasma carries the magnetic field in its motion. In the corona, on the contrary, the mean free-path of the electrons is of the order of kilometres and even more, so each electron can do a helicoidal motion long before being scattered after a collision. Therefore, the heat transfer is enhanced along the magnetic field lines and inhibited in the perpendicular direction.
In the direction longitudinal to the magnetic field, the thermal conductivity of the corona is
where is the Boltzmann constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
, is the temperature in kelvin, is the electron mass, is the electric charge of the electron,
is the Coulomb logarithm, and
is the Debye length of the plasma with particle density . The Coulomb logarithm is roughly 20 in the corona, with a mean temperature of 1 MK and a density of 1015 particles/m3, and about 10 in the chromosphere, where the temperature is approximately 10kK and the particle density is of the order of 1018 particles/m3, and in practice it can be assumed constant.
Thence, if we indicate with the heat for a volume unit, expressed in J m−3, the Fourier equation of heat transfer, to be computed only along the direction of the field line, becomes
Numerical calculations have shown that the thermal conductivity of the corona is comparable to that of copper.
Coronal seismology
Coronal seismology is a method of studying the plasma of the solar corona with the use of magnetohydrodynamic (MHD) waves. MHD studies the dynamics of electrically conducting fluid
In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
s – in this case, the fluid is the coronal plasma. Philosophically, coronal seismology is similar to the Earth's seismology
Seismology (; from Ancient Greek σεισμός (''seismós'') meaning "earthquake" and -λογία (''-logía'') meaning "study of") is the scientific study of earthquakes (or generally, quakes) and the generation and propagation of elastic ...
, the Sun's helioseismology
Helioseismology is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismol ...
, and MHD spectroscopy of laboratory plasma devices. In all these approaches, waves of various kinds are used to probe a medium. The potential of coronal seismology in the estimation of the coronal magnetic field, density scale height, fine structure and heating has been demonstrated by different research groups.
Coronal heating problem
The coronal heating problem in solar physics
Solar physics is the branch of astrophysics that specializes in the study of the Sun. It intersects with many disciplines of pure physics and astrophysics.
Because the Sun is uniquely situated for close-range observing (other stars cannot be re ...
relates to the question of why the temperature of the Sun's corona is millions of kelvins greater than the thousands of kelvins of the surface. Several theories have been proposed to explain this phenomenon, but it is still challenging to determine which is correct. The problem first emerged after the identification of unknown spectral lines in the solar spectrum with highly ionized iron and calcium atoms. The comparison of the coronal and the photospheric temperatures of , leads to the question of how the 200-times-hotter coronal temperature can be maintained. The problem is primarily concerned with how the energy is transported up into the corona and then converted into heat within a few solar radii.
The high temperatures require energy to be carried from the solar interior to the corona by non-thermal processes, because the second law of thermodynamics
The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
prevents heat from flowing directly from the solar photosphere (surface), which is at about , to the much hotter corona at about 1 to 3 MK (parts of the corona can even reach ).
Between the photosphere and the corona, the thin region through which the temperature increases is known as the transition region. It ranges from only tens to hundreds of kilometers thick. Energy cannot be transferred from the cooler photosphere to the corona by conventional heat transfer as this would violate the second law of thermodynamics. An analogy of this would be a light bulb raising the temperature of the air surrounding the bulb to a temperature greater than that of the bulb's glass surface. Hence, some other manner of energy transfer must be involved in the heating of the corona.
The amount of power required to heat the solar corona can easily be calculated as the difference between coronal radiative losses and heating by thermal conduction toward the chromosphere through the transition region. It is about 1 kilowatt for every square meter of surface area on the Sun's chromosphere, or 1/ of the amount of light energy that escapes the Sun.
Many coronal heating theories have been proposed, but two theories have remained as the most likely candidates: wave heating and magnetic reconnection (or nanoflares). Through most of the past 50 years, neither theory has been able to account for the extreme coronal temperatures.
In 2012, high resolution (<0.2″) soft X-ray imaging with the High Resolution Coronal Imager aboard a sounding rocket
A sounding rocket or rocketsonde, sometimes called a research rocket or a suborbital rocket, is an instrument-carrying rocket designed to take measurements and perform scientific experiments during its sub-orbital flight. The rockets are often ...
revealed tightly wound braids in the corona. It is hypothesized that the reconnection and unravelling of braids can act as primary sources of heating of the active solar corona to temperatures of up to 4 million kelvin. The main heat source in the quiescent corona (about 1.5 million kelvin) is assumed to originate from MHD waves.
NASA
The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
's Parker Solar Probe is intended to approach the Sun to a distance of approximately 9.5 solar radii to investigate coronal heating and the origin of the solar wind. It was successfully launched on August 12, 2018 and by late 2022 had completed the first 13 of more than 20 planned close approaches to the Sun.
Wave heating theory
The wave heating theory, proposed in 1949 by Evry Schatzman, proposes that waves carry energy from the solar interior to the solar chromosphere and corona. The Sun is made of plasma rather than ordinary gas, so it supports several types of waves analogous to sound waves in air. The most important types of wave are magneto-acoustic waves and Alfvén wave
In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of plasma wave in which ions oscillate in response to a restoring force provided by an Magnetic tension force, effective tension on the magnetic field lines.
Definition
...
s. Magneto-acoustic waves are sound waves that have been modified by the presence of a magnetic field, and Alfvén waves are similar to ultra low frequency radio waves
Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths ...
that have been modified by interaction with matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
in the plasma. Both types of waves can be launched by the turbulence of granulation and super granulation at the solar photosphere, and both types of waves can carry energy for some distance through the solar atmosphere before turning into shock waves that dissipate their energy as heat.
One problem with wave heating is delivery of the heat to the appropriate place. Magneto-acoustic waves cannot carry sufficient energy upward through the chromosphere to the corona, both because of the low pressure present in the chromosphere and because they tend to be reflected
Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The ...
back to the photosphere. Alfvén waves can carry enough energy, but do not dissipate that energy rapidly enough once they enter the corona. Waves in plasmas are notoriously difficult to understand and describe analytically, but computer simulations, carried out by Thomas Bogdan and colleagues in 2003, seem to show that Alfvén waves can transmute into other wave modes at the base of the corona, providing a pathway that can carry large amounts of energy from the photosphere through the chromosphere and transition region and finally into the corona where it dissipates it as heat.
Another problem with wave heating has been the complete absence, until the late 1990s, of any direct evidence of waves propagating through the solar corona. The first direct observation of waves propagating into and through the solar corona was made in 1997 with the Solar and Heliospheric Observatory space-borne solar observatory, the first platform capable of observing the Sun in the extreme ultraviolet (EUV) for long periods of time with stable photometry
Photometry can refer to:
* Photometry (optics), the science of measurement of visible light in terms of its perceived brightness to human vision
* Photometry (astronomy), the measurement of the flux or intensity of an astronomical object's electr ...
. Those were magneto-acoustic waves with a frequency of about 1 millihertz (mHz, corresponding to a wave period), that carry only about 10% of the energy required to heat the corona. Many observations exist of localized wave phenomena, such as Alfvén waves launched by solar flares, but those events are transient and cannot explain the uniform coronal heat.
It is not yet known exactly how much wave energy is available to heat the corona. Results published in 2004 using data from the TRACE spacecraft seem to indicate that there are waves in the solar atmosphere at frequencies as high as (10 second period). Measurements of the temperature of different ions
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
in the solar wind with the UVCS instrument aboard SOHO
SoHo, short for "South of Houston Street, Houston Street", is a neighborhood in Lower Manhattan, New York City. Since the 1970s, the neighborhood has been the location of many artists' lofts and art galleries, art installations such as The Wall ...
give strong indirect evidence that there are waves at frequencies as high as , well into the range of human hearing. These waves are very difficult to detect under normal circumstances, but evidence collected during solar eclipses by teams from Williams College
Williams College is a Private college, private liberal arts colleges in the United States, liberal arts college in Williamstown, Massachusetts, United States. It was established as a men's college in 1793 with funds from the estate of Ephraim ...
suggest the presences of such waves in the 1– range.
Recently, Alfvénic motions have been found in the lower solar atmosphere and also in the quiet Sun, in coronal holes and in active regions using observations with AIA on board the Solar Dynamics Observatory.
These Alfvénic oscillations have significant power, and seem to be connected to the chromospheric Alfvénic oscillations previously reported with the Hinode spacecraft.
Solar wind observations with the ''Wind'' spacecraft have recently shown evidence to support theories of Alfvén-cyclotron dissipation, leading to local ion heating.
Magnetic reconnection theory
The magnetic reconnection theory relies on the solar magnetic field to induce electric currents in the solar corona. The currents then collapse suddenly, releasing energy as heat and wave energy in the corona. This process is called "reconnection" because of the peculiar way that magnetic fields behave in plasma (or any electrically conductive fluid such as mercury or seawater
Seawater, or sea water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has approximat ...
). In a plasma, magnetic field lines are normally tied to individual pieces of matter, so that the topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
of the magnetic field remains the same: if a particular north and south magnetic pole are connected by a single field line, then even if the plasma is stirred or if the magnets are moved around, that field line will continue to connect those particular poles. The connection is maintained by electric currents that are induced in the plasma. Under certain conditions, the electric currents can collapse, allowing the magnetic field to "reconnect" to other magnetic poles and release heat and wave energy in the process.
Magnetic reconnection is hypothesized to be the mechanism behind solar flares, the largest explosions in the Solar System. Furthermore, the surface of the Sun is covered with millions of small magnetized regions 50– across. These small magnetic poles are buffeted and churned by the constant granulation. The magnetic field in the solar corona must undergo nearly constant reconnection to match the motion of this "magnetic carpet", so the energy released by the reconnection is a natural candidate for the coronal heat, perhaps as a series of "microflares" that individually provide very little energy but together account for the required energy.
The idea that nanoflares might heat the corona was proposed by Eugene Parker in the 1980s but is still controversial. In particular, ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
telescopes such as TRACE and SOHO
SoHo, short for "South of Houston Street, Houston Street", is a neighborhood in Lower Manhattan, New York City. Since the 1970s, the neighborhood has been the location of many artists' lofts and art galleries, art installations such as The Wall ...
/EIT can observe individual micro-flares as small brightenings in extreme ultraviolet light, but there seem to be too few of these small events to account for the energy released into the corona. The additional energy not accounted for could be made up by wave energy, or by gradual magnetic reconnection that releases energy more smoothly than micro-flares and therefore does not appear well in the TRACE data. Variations on the micro-flare hypothesis use other mechanisms to stress the magnetic field or to release the energy, and are a subject of active research in 2005.
Spicules (type II)
For decades, researchers believed spicules could send heat into the corona. However, following observational research in the 1980s, it was found that spicule plasma did not reach coronal temperatures, and so the theory was discounted.
As per studies performed in 2010 at the ''National Center for Atmospheric Research'' in Colorado
Colorado is a U.S. state, state in the Western United States. It is one of the Mountain states, sharing the Four Corners region with Arizona, New Mexico, and Utah. It is also bordered by Wyoming to the north, Nebraska to the northeast, Kansas ...
, in collaboration with the ''Lockheed Martin's Solar and Astrophysics Laboratory'' (LMSAL) and the ''Institute of Theoretical Astrophysics'' of the University of Oslo
The University of Oslo (; ) is a public university, public research university located in Oslo, Norway. It is the List of oldest universities in continuous operation#Europe, oldest university in Norway. Originally named the Royal Frederick Univ ...
, a new class of spicules (TYPE II) discovered in 2007, which travel faster (up to 100 km/s) and have shorter lifespans, can account for the problem. These jets insert heated plasma into the Sun's outer atmosphere.
The Atmospheric Imaging Assembly on NASA's Solar Dynamics Observatory and NASA's Focal Plane Package for the Solar Optical Telescope on the Japanese Hinode satellite were used to test this hypothesis. The high spatial and temporal resolutions of the newer instruments reveal this coronal mass supply.
According to analysis in 2011 by de Pontieu and colleagues, these observations reveal a one-to-one connection between plasma that is heated to millions of degrees and the spicules that insert this plasma into the corona.
See also
* Advanced Composition Explorer
* Geocorona
*Supernova
A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
* Supra-arcade downflows
* X-ray astronomy
X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to ...
References
External links
NASA description of the solar corona
Solar and Heliospheric Observatory, including near-real-time images of the solar corona
Coronal x-ray images from the Hinode XRT
nbsp;– a combination of thirty-three photographs of the Sun's corona that were digitally processed to highlight faint features of a total eclipse that occurred in March 2006
(University of South Wales)
Solar Interface Region – Bart de Pontieu (SETI Talks) Video
{{Authority control
Sun
Space plasmas
Light sources
Unsolved problems in astronomy
Articles containing video clips