Factors affecting energy conversion efficiency
The factors affectingThermodynamic-efficiency limit and infinite-stack limit
If one has a source of heat at temperature and cooler heat sink at temperature , the maximum theoretically possible value for the ratio of work (or electric power) obtained to heat supplied is , given by a Carnot heat engine. If we take 6000 K for the temperature of the sun and 300 K for ambient conditions on earth, this comes to 95%. In 1981, Alexis de Vos and Herman Pauwels showed that this is achievable with a stack of an infinite number of cells with band gaps ranging from infinity (the first cells encountered by the incoming photons) to zero, with a voltage in each cell very close to the open-circuit voltage, equal to 95% of the band gap of that cell, and with 6000 K blackbody radiation coming from all directions. However, the 95% efficiency thereby achieved means that the electric power is 95% of the ''net'' amount of light absorbed – the stack ''emits'' radiation as it has non-zero temperature, and this radiation has to be subtracted from the incoming radiation when calculating the amount of heat being transferred and the efficiency. They also considered the more relevant problem of maximizing the power output for a stack being illuminated from all directions by 6000 K blackbody radiation. In this case, the voltages must be lowered to less than 95% of the band gap (the percentage is not constant over all the cells). The maximum theoretical efficiency calculated is 86.8% for a stack of an infinite number of cells, using the incoming concentrated sunlight radiation. When the incoming radiation comes only from an area of the sky the size of the sun, the efficiency limit drops to 68.7%.Ultimate efficiency
Normal photovoltaic systems however have only oneQuantum efficiency
As described above, when a photon is absorbed by a solar cell it can produce an electron-hole pair. One of the carriers may reach the p–n junction and contribute to the current produced by the solar cell; such a carrier is said to be ''collected''. Or, the carriers recombine with no net contribution to cell current. Quantum efficiency refers to the percentage of photons that are converted to electric current (i.e., collected carriers) when the cell is operated under short circuit conditions. There are two types of quantum that are usually referred to when talking about solar cells. The external quantum efficiency, that relates to the external measurable properties of the solar cell. The "external" quantum efficiency of a silicon solar cell includes the effect of optical losses such as transmission and reflection. In particular, some measures can be taken to reduce these losses. The reflection losses, which can account for up to 10% of the total incident energy, can be dramatically decreased using a technique called texturization, a light trapping method that modifies the average light path. The second type is the internal quantum efficiency, this measurement of the internal quantum efficiency gives a deeper insight of the internal material parameters like the absorption coefficient or internal luminescence quantum efficiency. The internal quantum efficiency is mainly used when it comes to the understanding of the potential of a certain material rather than a device. Quantum efficiency is most usefully expressed as a ''spectral'' measurement (that is, as a function of photon wavelength or energy). Since some wavelengths are absorbed more effectively than others, spectral measurements of quantum efficiency can yield valuable information about the quality of the semiconductor bulk and surfaces. However, the quantum efficiency alone is not the same as overall energy conversion efficiency, as it does not convey information about the fraction of power that is converted by the solar cell.Maximum power point
A solar cell may operate over a wide range of voltages (V) and currents (I). By increasing the resistive load on an irradiated cell continuously from zero (a '' short circuit'') to a very high value (an ''open circuit'') one can determine the maximum power point, the point that maximizes V×I; that is, the load for which the cell can deliver maximum electrical power at that level of irradiation. (The output power is zero in both the short circuit and open circuit extremes). The maximum power point of a solar cell is affected by its temperature. Knowing the technical data of certain solar cell, its power output at a certain temperature can be obtained by , where is the power generated at the standard testing condition; is the actual temperature of the solar cell. A high quality, monocrystalline silicon solar cell, at 25 °C cell temperature, may produce 0.60 V open-circuit (''VOC''). The cell temperature in full sunlight, even with 25 °C air temperature, will probably be close to 45 °C, reducing the open-circuit voltage to 0.55 V per cell. The voltage drops modestly, with this type of cell, until the short-circuit current is approached (''ISC''). Maximum power (with 45 °C cell temperature) is typically produced with 75% to 80% of the open-circuit voltage (0.43 V in this case) and 90% of the short-circuit current. This output can be up to 70% of the ''VOC x ISC'' product. The short-circuit current (''ISC'') from a cell is nearly proportional to the illumination, while the open-circuit voltage (''VOC'') may drop only 10% with an 80% drop in illumination. Lower-quality cells have a more rapid drop in voltage with increasing current and could produce only 1/2 ''VOC'' at 1/2 ''ISC''. The usable power output could thus drop from 70% of the ''VOC x ISC'' product to 50% or even as little as 25%. Vendors who rate their solar cell "power" only as ''VOC x ISC'', without giving load curves, can be seriously distorting their actual performance. The maximum power point of aFill factor
Another defining term in the overall behaviour of a solar cell is the ''fill factor'' (''FF''). This factor is a measure of quality of a solar cell. This is the available ''power'' at the ''maximum power point'' (''Pm'') divided by the ''open circuit voltage'' (''VOC'') and the ''short circuit current'' (''ISC''): : The fill factor can be represented graphically by the IV sweep, where it is the ratio of the different rectangular areas. The fill factor is directly affected by the values of the cell's series, shunt resistances and diodes losses. Increasing the shunt resistance (Rsh) and decreasing theComparison
Energy conversion efficiency is measured by dividing the electrical output by the incident light power. Factors influencing output include spectral distribution, spatial distribution of power, temperature, and resistive load. IEC standard 61215 is used to compare the performance of cells and is designed around standard (terrestrial, temperate) temperature and conditions (STC):Energy payback
The energy payback time is defined as the recovery time required for generating the energy spent for manufacturing a modern photovoltaic module. In 2008, it was estimated to be from 1 to 4 years depending on the module type and location. With a typical lifetime of 20 to 30 years, this means that modern solar cells would be net energy producers, i.e., they would generate more energy over their lifetime than the energy expended in producing them. Generally, thin-film technologies—despite having comparatively low conversion efficiencies—achieve significantly shorter energy payback times than conventional systems (often < 1 year). A study published in 2013 which the existing literature found that energy payback time was between 0.75 and 3.5 years with thin film cells being at the lower end and multi-si-cells having a payback time of 1.5–2.6 years. A 2015 review assessed the energy payback time and EROI of solar photovoltaics. In this meta study, which uses an insolation of 1,700 kWh/m2/year and a system lifetime of 30 years, mean harmonized EROIs between 8.7 and 34.2 were found. Mean harmonized energy payback time varied from 1.0 to 4.1 years. Crystalline silicon devices achieve on average an energy payback period of 2 years. Like any other technology, solar cell manufacture is dependent on the existence of a complex global industrial manufacturing system. This includes the fabrication systems typically accounted for in estimates of manufacturing energy; the contingent mining, refining and global transportation systems; and other energy intensive support systems including finance, information, and security systems. The difficulty in measuring such energy overhead confers some uncertainty on any estimate of payback times.Technical methods of improving efficiency
Choosing optimum transparent conductor
The illuminated side of some types of solar cells, thin films, have a transparent conducting film to allow light to enter into the active material and to collect the generated charge carriers. Typically, films with high transmittance and high electrical conductance such as indium tin oxide, conducting polymers or conducting nanowire networks are used for the purpose. There is a trade-off between high transmittance and electrical conductance, thus optimum density of conducting nanowires or conducting network structure should be chosen for high efficiency.Promoting light scattering in the visible spectrum
Lining the light-receiving surface of the cell with nano-sized metallic studs can substantially increase the cell efficiency. Light reflects off these studs at an oblique angle to the cell, increasing the length of the light path through the cell. This increases the number of photons absorbed by the cell and the amount of current generated. The main materials used for the nano-studs are silver, gold, and aluminium. Gold and silver are not very efficient, as they absorb much of the light in the visible spectrum, which contains most of the energy present in sunlight, reducing the amount of light reaching the cell. Aluminium absorbs only ultraviolet radiation, and reflects both visible and infra-red light, so energy loss is minimized. Aluminium can increase cell efficiency up to 22% (in lab conditions).Radiative cooling
An increase in solar cell temperature of approximately 1 °C causes an efficiency decrease of about 0.45%. To prevent this, a transparent silica crystal layer can be applied to solar panels. The silica layer acts as a thermal black body which emits heat as infrared radiation into space, cooling the cell up to 13 °C. Radiative cooling can thus extend the life of solar cells. Full-system integration of solar energy and radiative cooling is referred to as a combined SE–RC system, which have demonstrated higher energy gain per unit area when compared to non-integrated systems.Anti-reflective coatings and textures
Antireflective coatings could result in more destructive interference of incident light waves from the sun. Therefore, most of the sunlight would be transmitted into the photovoltaic. There are a few anti-reflective coatings types, some of which can be based on the layer composition or the surface topography. Many architectures of these anti-reflective coats are inspired by nature. For example, the nipple-array, a hexagonal array of subwavelength conical nanostructures, can be seen at the surface of the moth's eyes. It was reported that utilizing this sort of surface architecture minimizes the reflection losses by 25%, converting the additional captured photon to a 12% increase in a solar cell's energy. Texturizing can also be used as a method to achieve anti-reflectiveness in which the surface of a solar cell is altered so that the reflected light strikes the surface again. These surfaces can be created by etching or using lithography. Adding a flat back surface in addition to texturizing the front surface helps to trap the light within the cell, thus providing a longer optical path.Rear surface passivation
Surface passivation is critical to solar cell efficiency. Many improvements have been made to the front side of mass-produced solar cells, but the aluminium back-surface is impeding efficiency improvements. The efficiency of many solar cells has benefitted by creating so-called passivated emitter and rear cells (PERCs). The chemical deposition of a rear-surface dielectric passivation layer stack that is also made of a thin silica or aluminium oxide film topped with a silicon nitride film helps to improve efficiency in silicon solar cells. This helped increase cell efficiency for commercial Cz-Si wafer material from just over 17% to over 21% by the mid-2010s, and the cell efficiency for quasi-mono-Si to a record 19.9%. Concepts of the rear surface passivation for silicon solar cells has also been implemented for CIGS solar cells. The rear surface passivation shows the potential to improve the efficiency. Al2O3 and SiO2 have been used as the passivation materials. Nano-sized point contacts on Al2O3 layer and line contacts on SiO2 layer provide the electrical connection of CIGS absorber to the rear electrodeThin film materials
Thin film materials show a lot of promise for solar cells in terms of low costs and adaptability to existing structures and frameworks in technology.Da, Yun, and Yimin Xuan. "Role of Surface Recombination in Affecting the Efficiency of Nanostructured Thin-Film Solar Cells .” Osapublishing, 2013, www.osapublishing.org/DirectPDFAccess/F1E0036E-C63D-5F6F-EA52FF38B5D1786D_270075/oe-21-S6-A1065 Since the materials are so thin, they lack the optical absorption of bulk material solar cells. Attempts to correct this have been tried, more important is thin film surface recombination. Since this is the dominant recombination process of nanoscale thin-film solar cells, it is crucial to their efficiency. Adding a passivating thin layer of silicon dioxide could reduce recombination.See also
* Environmental impact of the energy industry * Energy efficiencyReferences
External links
* * * {{Solar energy Solar cells Photovoltaics