HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the term socle has several related meanings.


Socle of a group

In the context of
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
, the socle of a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
''G'', denoted soc(''G''), is the
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
generated by the
minimal normal subgroup In mathematics, in the field of group theory, a group is said to be characteristically simple if it has no proper nontrivial characteristic subgroups. Characteristically simple groups are sometimes also termed elementary groups. Characteristically s ...
s of ''G''. It can happen that a group has no minimal non-trivial
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G i ...
(that is, every non-trivial normal subgroup properly contains another such subgroup) and in that case the socle is defined to be the subgroup generated by the identity. The socle is a
direct product In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one ta ...
of minimal normal subgroups. As an example, consider the
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
Z12 with
generator Generator may refer to: * Signal generator, electronic devices that generate repeating or non-repeating electronic signals * Electric generator, a device that converts mechanical energy to electrical energy. * Generator (circuit theory), an eleme ...
''u'', which has two minimal normal subgroups, one generated by ''u''4 (which gives a normal subgroup with 3 elements) and the other by ''u''6 (which gives a normal subgroup with 2 elements). Thus the socle of Z12 is the group generated by ''u''4 and ''u''6, which is just the group generated by ''u''2. The socle is a
characteristic subgroup In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism ...
, and hence a normal subgroup. It is not necessarily transitively normal, however. If a group ''G'' is a
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
solvable group In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates ...
, then the socle can be expressed as a product of
elementary abelian In mathematics, specifically in group theory, an elementary abelian group (or elementary abelian ''p''-group) is an abelian group in which every nontrivial element has order ''p''. The number ''p'' must be prime, and the elementary abelian grou ...
''p''-groups. Thus, in this case, it is just a product of copies of Z/''p''Z for various ''p'', where the same ''p'' may occur multiple times in the product.


Socle of a module

In the context of
module theory In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mod ...
and
ring theory In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their re ...
the socle of a
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Mo ...
''M'' over a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
''R'' is defined to be the sum of the minimal nonzero
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mod ...
s of ''M''. It can be considered as a dual notion to that of the
radical of a module In mathematics, in the theory of modules, the radical of a module is a component in the theory of structure and classification. It is a generalization of the Jacobson radical for rings. In many ways, it is the dual notion to that of the socle s ...
. In set notation, :\mathrm(M) = \sum_ N. Equivalently, :\mathrm(M) = \bigcap_ E. The socle of a ring ''R'' can refer to one of two sets in the ring. Considering ''R'' as a right ''R''-module, soc(''R''''R'') is defined, and considering ''R'' as a left ''R''-module, soc(''R''''R'') is defined. Both of these socles are
ring ideal In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers pre ...
s, and it is known they are not necessarily equal. * If ''M'' is an
Artinian module In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if it ...
, soc(''M'') is itself an
essential submodule In mathematics, specifically module theory, given a ring ''R'' and an ''R''-module ''M'' with a submodule ''N'', the module ''M'' is said to be an essential extension of ''N'' (or ''N'' is said to be an essential submodule or large submodule of ''M ...
of ''M''. * A module is
semisimple In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of ''sim ...
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicondi ...
soc(''M'') = ''M''. Rings for which soc(''M'') = ''M'' for all ''M'' are precisely
semisimple ring In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itsel ...
s. * soc(soc(''M'')) = soc(''M''). *''M'' is a
finitely cogenerated module In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts in ...
if and only if soc(''M'') is finitely generated and soc(''M'') is an
essential submodule In mathematics, specifically module theory, given a ring ''R'' and an ''R''-module ''M'' with a submodule ''N'', the module ''M'' is said to be an essential extension of ''N'' (or ''N'' is said to be an essential submodule or large submodule of ''M ...
of ''M''. *Since the sum of semisimple modules is semisimple, the socle of a module could also be defined as the unique maximal semisimple submodule. * From the definition of rad(''R''), it is easy to see that rad(''R'') annihilates soc(''R''). If ''R'' is a finite-dimensional unital
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
and ''M'' a finitely generated ''R''-module then the socle consists precisely of the elements annihilated by the
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yie ...
of ''R''.


Socle of a Lie algebra

In the context of
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
s, a socle of a
symmetric Lie algebra In mathematics, an orthogonal symmetric Lie algebra is a pair (\mathfrak, s) consisting of a real Lie algebra \mathfrak and an automorphism s of \mathfrak of order 2 such that the eigenspace \mathfrak of ''s'' corresponding to 1 (i.e., the set \math ...
is the
eigenspace In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
of its structural
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
that corresponds to the
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
 −1. (A symmetric Lie algebra decomposes into the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more ...
of its socle and cosocle.) Mikhail Postnikov, ''Geometry VI: Riemannian Geometry'', 2001,
p. 98
/ref>


See also

*
Injective hull In mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in . Definition ...
*
Radical of a module In mathematics, in the theory of modules, the radical of a module is a component in the theory of structure and classification. It is a generalization of the Jacobson radical for rings. In many ways, it is the dual notion to that of the socle s ...
* Cosocle


References

* * * {{Set index article, mathematics Module theory Group theory Functional subgroups