HOME
*





Artinian Module
In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if it is an Artinian module over itself (with left or right multiplication). Both concepts are named for Emil Artin. In the presence of the axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ..., the descending chain condition becomes equivalent to the minimum condition, and so that may be used in the definition instead. Like Noetherian modules, Artinian modules enjoy the following heredity property: * If ''M'' is an Artinian ''R''-module, then so is any submodule and any quotient module, quotient of ''M''. The converse (logic), co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relation To The Noetherian Condition
Relation or relations may refer to: General uses *International relations, the study of interconnection of politics, economics, and law on a global level *Interpersonal relationship, association or acquaintance between two or more people *Public relations, managing the spread of information to the public *Sexual relations, or human sexual activity *Social relation, in social science, any social interaction between two or more individuals Logic and philosophy * Relation (philosophy), links between properties of an object *Relational theory, framework to understand reality or a physical system Mathematics A finitary or ''n''-ary relation is a set of ''n''-tuples. Specific types of relations include: *Relation (mathematics) * Binary relation (or correspondence, dyadic relation, or 2-place relation) * Equivalence relation *Homogeneous relation *Reflexive relation *Serial relation *Ternary relation (or triadic, 3-adic, 3-ary, 3-dimensional, or 3-place relation) Relation may also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Module
In mathematics, more specifically in ring theory, a cyclic module or monogenous module is a module over a ring that is generated by one element. The concept is a generalization of the notion of a cyclic group, that is, an Abelian group (i.e. Z-module) that is generated by one element. Definition A left ''R''-module ''M'' is called cyclic if ''M'' can be generated by a single element i.e. for some ''x'' in ''M''. Similarly, a right ''R''-module ''N'' is cyclic if for some . Examples * 2Z as a Z-module is a cyclic module. * In fact, every cyclic group is a cyclic Z-module. * Every simple ''R''-module ''M'' is a cyclic module since the submodule generated by any non-zero element ''x'' of ''M'' is necessarily the whole module ''M''. In general, a module is simple if and only if it is nonzero and is generated by each of its nonzero elements. * If the ring ''R'' is considered as a left module over itself, then its cyclic submodules are exactly its left principal ideals as a ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero Ideal
In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An additive identity is the identity element in an additive group. It corresponds to the element 0 such that for all x in the group, . Some examples of additive identity include: * The zero vector under vector addition: the vector of length 0 and whose components are all 0. Often denoted as \mathbf or \vec. * The zero function or zero map defined by , under pointwise addition * The empty set under set union * An empty sum or empty coproduct * An initial object in a category (an empty coproduct, and so an identity under coproducts) Absorbing elements An absorbing element in a multiplicative semigroup or semiring generalises the property . Examples include: *The empty set, which is an absorbing element under Cartesian product of sets, since *The zero functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semisimple Ring
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the Artin–Wedderburn theorem, which exhibits these rings as finite direct products of matrix rings. For a group-theory analog of the same notion, see ''Semisimple representation''. Definition A module over a (not necessarily commutative) ring is said to be semisimple (or completely reducible) if it is the direct sum of simple (irreducible) submodules. For a module ''M'', the following are equivalent: # ''M'' is semisimple; i.e., a dir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simple Ring
In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. So, simple algebra and ''simple ring'' are synonyms. Several references (e.g., Lang (2002) or Bourbaki (2012)) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple). Under such terminology a non-zero ring with no non-trivial two-sided ideals is called quasi-simple. Rings which are simple as rings but are not a simple module over themselves do exist: a full matrix ring over a field does not have any nontrivial ideals (since any ideal of M_n(R) is of the form M_n(I) with I an ideal of R), but has nontrivial left ideals (for example, the sets of matrices which have some fixed zero columns). Accord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is uncountable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]