HOME

TheInfoList



OR:

In
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar wor ...
, a silencer is a DNA sequence capable of binding transcription regulation factors, called
repressor In molecular genetics, a repressor is a DNA- or RNA-binding protein that inhibits the expression of one or more genes by binding to the operator or associated silencers. A DNA-binding repressor blocks the attachment of RNA polymerase to the ...
s. DNA contains
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
s and provides the template to produce
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the p ...
(mRNA). That mRNA is then
translated Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
into proteins. When a repressor protein binds to the silencer region of DNA,
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens the ...
is prevented from
transcribing Transcription in the linguistic sense is the systematic representation of spoken language in written form. The source can either be utterances (''speech'' or ''sign language'') or preexisting text in another writing system. Transcription shoul ...
the DNA sequence into RNA. With transcription blocked, the
translation Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
of RNA into proteins is impossible. Thus, silencers prevent genes from being expressed as proteins. RNA polymerase, a DNA-dependent enzyme, transcribes the DNA sequences, called
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules wi ...
s, in the 3' to 5' direction while the complementary RNA is synthesized in the 5' to 3' direction. RNA is similar to DNA, except that RNA contains uracil, instead of thymine, which forms a base pair with adenine. An important region for the activity of gene repression and expression found in RNA is the 3' untranslated region. This is a region on the 3' terminus of RNA that will not be translated to protein but includes many regulatory regions. Not much is yet known about silencers but scientists continue to study in hopes to classify more types, locations in the genome, and diseases associated with silencers.


Functionality


Locations within the genome

A silencer is a sequence-specific element that induces a negative effect on the transcription of its particular gene. There are many positions in which a silencer element can be located in DNA. The most common position is found
upstream Upstream may refer to: * Upstream (bioprocess) * ''Upstream'' (film), a 1927 film by John Ford * Upstream (networking) * ''Upstream'' (newspaper), a newspaper covering the oil and gas industry * Upstream (petroleum industry) * Upstream (software ...
of the target gene where it can help repress the transcription of the gene. This distance can vary greatly between approximately -20 bp to -2000 bp upstream of a gene. Certain silencers can be found downstream of a promoter located within the intron or exon of the gene itself. Silencers have also been found within the 3 prime untranslated region (3' UTR) of mRNA.


Types

Currently, there are two main types of silencers in DNA, which are the classical silencer element and the non-classical
negative regulatory element A regulatory sequence is a segment of a nucleic acid molecule which is capable of increasing or decreasing the expression of specific genes within an organism. Regulation of gene expression is an essential feature of all living organisms and vi ...
(NRE). In classical silencers, the gene is actively repressed by the silencer element, mostly by interfering with
general transcription factor General transcription factors (GTFs), also known as basal transcriptional factors, are a class of protein transcription factors that bind to specific sites (Promoter (genetics), promoter) on DNA to activate Transcription (genetics), transcription ...
(GTF) assembly. NREs passively repress the gene, usually by inhibiting other elements that are upstream of the gene. Of the NREs, there are certain silencers that are orientation-dependent meaning that the binding factor binds in a particular direction relative to other sequences. Promoter-dependent silencers are understood to be silencer elements because they are position and orientation-dependent but must also use a promoter-specific factor. There has been a recent discovery of Polycomb-group Response Elements (PREs), which can allow and inhibit repression depending on the protein bound to it, and the presence of non-coding transcription.


Mechanisms

For classical silencers, the
signaling pathway In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
is relatively simple. Since repression is active, silencer elements target the assembly of GTFs, necessary for transcription of the gene. These silencer elements are mostly located upstream of the gene and can vary between short and long distances. For long-range silencers, it has been observed that the DNA will form a loop in order to bring the silencer closer to the promoter and loop out the interfering DNA. Silencers also target
helicase Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separatin ...
sites in the DNA that are rich in adenine and thymine (AT) and prone to unwinding the DNA, allowing room to initiate transcription. The inhibited helicase activity leads to the inhibition of transcription. This is commonly seen in the human thyrotropin-β gene promoter. NREs can induce a bend in the promoter region to block interactions, as seen when an NRE binds to Yin-Yang 1 (
YY1 YY1 (Yin Yang 1) is a transcriptional repressor protein in humans that is encoded by the YY1 gene. Function YY1 is a ubiquitously distributed transcription factor belonging to the GLI-Kruppel class of zinc finger proteins. The protein is invo ...
), and flank regulatory signals or promoter regions as well. When the silencer region is located within an intron, there can be two types of repressions. First, there can be a physical blockage of a splice site. Second, there can be a bend in the DNA that will inhibit RNA processing. When located in the exon or the untranslated region, the silencer will mainly be classical or position-dependent. However, these silencers can carry out their activity prior to transcription. Most silencers are constitutively expressed in organisms, only allowing activation of a gene by either inhibiting the silencer or by activating an enhancer region. The best example of this is the Neuronal-Restrictive Silencer Factor (NRSF) that is produced by the ''REST'' gene. The ''REST'' gene produces NRSF in order to repress the transcription of neuronal genes that are essential for localization of neuronal tissue. When a silencer represses ''REST'', NRSF is also inhibited, allowing for the transcription of neuronal genes.


Similarities with enhancers

Another regulatory element located upstream of the gene is an enhancer. Enhancers function as a "turn on" switch in gene expression and will activate the promoter region of a particular gene while silencers act as the "turn off" switch. Though these two regulatory elements work against each other, both sequence types affect the promoter region in very similar ways. Because silencers have not been thoroughly identified and analyzed, the extensive research on enhancers has aided biologists in understanding the mechanics of the silencer. Enhancers can be found in many of the same areas that silencers are found, such as upstream of the promoter by many kilobase pairs, or even downstream within the intron of the gene. DNA looping is also a model function used by enhancers in order to shorten the proximity of the promoter to the enhancer. Enhancers also function with transcription factors in order to initiate expression, much like silencers can with repressors.


In prokaryotes and eukaryotes


Prokaryotes

There are several differences in the regulation of metabolic control in eukaryotes and in prokaryotes. Prokaryotes vary the numbers of specific enzymes made in their cells in order to regulate gene expression, which is slow metabolic control, and also regulate enzymatic pathways through mechanisms such as
feedback inhibition An enzyme inhibitor is a molecule that binds to an enzyme and blocks its activity. Enzymes are proteins that speed up chemical reactions necessary for life, in which substrate molecules are converted into products. An enzyme facilitates a sp ...
and
allosteric regulation In biochemistry, allosteric regulation (or allosteric control) is the regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site. The site to which the effector binds is termed the ''allosteric site ...
, which is rapid metabolic control. The genes of prokaryotes are grouped together based on similar functions into units called
operon In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splic ...
s which consist of a promoter and an operator. The operator is the binding site for the repressor and thus has a function equivalent to the silencer region in Eukaryotic DNA. When a repressor protein is bound to the operator, RNA polymerase cannot bind to the promoter to initiate the transcription of the operon.


Repression of the ''lac'' operon

The ''lac'' operon in the prokaryote E. coli consists of genes that produce enzymes to break down lactose. Its operon is an example of a prokaryotic silencer. The three functional genes in this operon are lacZ, lacY, and lacA. The repressor gene, lacI, will produce the repressor protein LacI which is under allosteric regulation. These genes are activated by the presence of lactose in the cell which acts as an
effector Effector may refer to: *Effector (biology), a molecule that binds to a protein and thereby alters the activity of that protein * ''Effector'' (album), a music album by the Experimental Techno group Download * ''EFFector'', a publication of the El ...
molecule that binds to LacI. When the repressor is bound to lactose, it will not bind to the operator, which allows RNA polymerase to bind to the promoter to initiate transcription of the operon. When the repressor's allosteric site is not bound to lactose, its active site will bind to the operator to prevent RNA polymerase from transcribing the genes of the ''lac'' operon.


Eukaryotes

Eukaryotes have a much larger genome and thus have different methods of gene regulation than in prokaryotes. All cells in a eukaryotic organism have the same DNA but are specified through differential gene expression, a phenomenon known as genetic totipotency. However, in order for a cell to express the genes for proper functioning, the genes must be closely regulated to express the correct properties. Genes in eukaryotes are controlled on the transcriptional, post-transcriptional, translational, and
post-translational Post-translational modification (PTM) is the covalent and generally enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by ribosom ...
levels. On the transcriptional level, gene expression is regulated by altering transcription rates. Genes that encode proteins include exons which will encode the polypeptides, introns that are removed from mRNA before the translation of proteins, a transcriptional start site in which RNA polymerase binds, and a promoter.


Repression of the TATA box

Eukaryotic genes contain an upstream promoter and a core promoter also referred to as a basal promoter. A common basal promoter is the TATAAAAAA sequence known as the
TATA box In molecular biology, the TATA box (also called the Goldberg–Hogness box) is a sequence of DNA found in the core promoter region of genes in archaea and eukaryotes. The bacterial homolog of the TATA box is called the Pribnow box which has ...
. The TATA box is a complex with several different proteins including
transcription factor II D Transcription factor II D (TFIID) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters o ...
(TFIID) which includes the TATA-binding protein (TBP) that binds to the TATA box along with 13 other proteins that bind to TBP. The TATA box binding proteins also include the
transcription factor II B Transcription factor II B (TFIIB) is a general transcription factor that is involved in the formation of the RNA polymerase II preinitiation complex (PIC) and aids in stimulating transcription initiation. TFIIB is localised to the nucleus and pro ...
(TFIIB) which binds to both DNA and RNA polymerases. Silencers in eukaryotes control gene expression on a transcriptional level in which the mRNA is not transcribed. These DNA sequences may act as either silencers or enhancers based on the transcription factor that binds to the sequence and binding of this sequence will prevent promoters such as the TATA box from binding to RNA polymerase. A repressor protein may have regions that bind to the DNA sequence as well as regions that bind to the transcription factors assembled at the promoter of the gene which would create a chromosome looping mechanism. Looping brings silencers in close proximity to the promoters to ensure that groups of proteins needed for optimal gene expression will work together.


Mutated silencers, hereditary diseases, and their effects

Genetic
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mi ...
s occur when nucleotide sequences in an organism are altered. These mutations lead to not only observable phenotypic influences in an individual, but also alterations that are undetectable phenotypically. The sources for these mutations can be errors during replication, spontaneous mutations, and chemical and physical
mutagen In genetics, a mutagen is a physical or chemical agent that permanently changes nucleic acid, genetic material, usually DNA, in an organism and thus increases the frequency of mutations above the natural background level. As many mutations can ca ...
s ( UV and
ionizing radiation Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
, heat). Silencers, being encoded in the genome, are susceptible to such alterations which, in many cases, can lead to severe phenotypical and functional abnormalities. In general terms, mutations in silencer elements or regions could lead to either the inhibition of the silencer's action or to the persisting repression of a necessary gene. This can then lead to the expression or suppression of an undesired phenotype which may affect the normal functionality of certain systems in the organism. Among the many silencer elements and proteins, REST/NSRF is an important silencer factor that has a variety of impacts, not only in neural aspects of development. In fact, in many cases, REST/NSRF acts in conjunction with RE-1/NRSE to repress and influence non-neuronal cells. Its effects range from frogs (''Xenopus laevis'') to humans, with innumerous effects in phenotype and also in development. In ''Xenopus laevis'', REST/NRSF malfunction or damage has been associated to abnormal ectodermal patterning during development and significant consequences in neural tube, cranial ganglia, and eye development. In humans, a deficiency in the REST/NSRF silencer element has been correlated to
Huntington's disease Huntington's disease (HD), also known as Huntington's chorea, is a neurodegenerative disease that is mostly inherited. The earliest symptoms are often subtle problems with mood or mental abilities. A general lack of coordination and an unst ...
due to the decrease in the transcription of
BDNF Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein found in the and the periphery. that, in humans, is encoded by the ''BDNF'' gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the cano ...
. Furthermore, ongoing studies indicate that NRSE is involved in the regulation of the ANP gene, which when over expressed, can lead to
ventricular hypertrophy Ventricular hypertrophy (VH) is thickening of the walls of a ventricle (lower chamber) of the heart. Although left ventricular hypertrophy (LVH) is more common, right ventricular hypertrophy (RVH), as well as concurrent hypertrophy of both ventri ...
. Mutations in the Polycomb-group (PcG) complexes also presented significant modifications in physiological systems of organisms. Hence, modification in silencer elements and sequences can result in either devastating or unnoticeable changes.


REST/NRSF in ''Xenopus laevis''

The effects and influences of RE1/NRSE and REST/NRSF are significant in non-neuronal cells that require the repression or silencing of neuronal genes. These silencer elements also regulate the expression of genes that do not induce neuron-specific proteins and studies have shown the extensive impact these factors have in cellular processes. In Xenopus laevis, RE1/NRSE and REST/NRSF dysfunction or mutation demonstrated significant impact on
neural tube In the developing chordate (including vertebrates), the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural fold become elevated, a ...
, cranial ganglia, and eye development. All of these alterations can be traced to an improper patterning of the
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from t ...
during Xenopus development. Thus, a mutation or alteration in either the silencing region RE1/NRSE or silencer REST/NRSF factor can disrupt the proper differentiation and specification of the neuroepithelial domain and also hinder the formation of skin or ectoderm. The lack of these factors result in a decreased production of bone morphogenetic protein (BMP), which translates into a deficient development of the
neural crest Neural crest cells are a temporary group of cells unique to vertebrates that arise from the embryonic ectoderm germ layer, and in turn give rise to a diverse cell lineage—including melanocytes, craniofacial cartilage and bone, smooth muscle, per ...
. Hence, the effects of NRSE and NRSF are of fundamental importance for neurogenesis of the developing embryo, and also in the early stages of ectodermal patterning. Ultimately, inadequate functioning of these factors can result in aberrant neural tube, cranial ganglia, and eye development in ''Xenopus''.


REST/NSRF and Huntington's disease

Huntington's disease Huntington's disease (HD), also known as Huntington's chorea, is a neurodegenerative disease that is mostly inherited. The earliest symptoms are often subtle problems with mood or mental abilities. A general lack of coordination and an unst ...
(HD) is an inherited neurodegenerative disorder, with symptoms emerging during an individual's mid-adulthood. The most noticeable symptoms of this progressive disease are cognitive and motor impairments, as well as behavioral alterations. These impairments can develop into
dementia Dementia is a disorder which manifests as a set of related symptoms, which usually surfaces when the brain is damaged by injury or disease. The symptoms involve progressive impairments in memory, thinking, and behavior, which negatively affe ...
,
chorea Chorea (or choreia, occasionally) is an abnormal involuntary movement disorder, one of a group of neurological disorders called dyskinesias. The term ''chorea'' is derived from the grc, χορεία ("dance"; see choreia), as the quick movement ...
, and eventually death. At the molecular level, HD results from a mutation in the
huntingtin Huntingtin (Htt) is the protein coded for in humans by the ''HTT'' gene, also known as the ''IT15'' ("interesting transcript 15") gene. Mutated ''HTT'' is the cause of Huntington's disease (HD), and has been investigated for this role and also for ...
protein (Htt). More specifically, there is an abnormal repetition of a CAG sequence towards the 5’-end of the gene, which then leads to the development of a toxic polyglutamine (polyQ) stretch in the protein. The mutated Htt protein affects an individual's proper neural functions by inhibiting the action of REST/NRSF. REST/NRSF is an important silencer element that binds to regulatory regions to control the expression of certain proteins involved in neural functions. The mechanistic actions of huntingtin are still not fully understood, but a correlation between Htt and REST/NRSF exists in HD development. By attaching to the REST/NRSF, the mutated huntingtin protein inhibits the action of the silencer element, and retains it in the cytosol. Thus, REST/NRSF cannot enter the nucleus and bind to the 21 base-pair RE-1/NRSE regulatory element. An adequate repression of specific target genes are of fundamental importance, as many are involved in the proper development of neuronal receptors,
neurotransmitters A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neur ...
, synaptic vesicle proteins, and channel proteins. A deficiency in the proper development of these proteins can cause the neural dysfunctions seen in Huntington's disease. In addition to the lack of repression due to the inactive REST/NRSF, mutated huntingtin protein can also decrease the transcription of the brain-derived neurotropic factor (BDNF) gene. BDNF influences the survival and development of neurons in the central nervous system as well as the peripheral nervous system. This abnormal repression occurs when the RE1/NRSE region within the BDNF promoter region is activated by the binding of REST/NRSF, which leads to the lack of transcription of the BDNF gene. Hence, the anomalous repression of the BDNF protein suggests a significant impact in Huntington's disease.


Current research on REST/NRSF and ventricular hypertrophy in mammals

REST/NRSF in conjunction with RE1/NRSE also acts outside the nervous system as regulators and repressors. Current research has linked RE1/NRSE activity with the regulation of the expression of the
atrial natriuretic peptide Atrial natriuretic peptide (ANP) or atrial natriuretic factor (ANF) is a natriuretic peptide hormone secreted from the cardiac atria that in humans is encoded by the NPPA gene. Natriuretic peptides (ANP, BNP, and CNP) are a family of hormone/p ...
(''ANP'') gene. An NRSE regulatory region is present in the 3’ untranslated region of the ''ANP'' gene and acts as a mediator for its appropriate expression. The protein encoded by the ''ANP'' gene is important during embryonic development for the maturation and development of cardiac
myocyte A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells. A skeletal muscle cell is long and threadlike with many nuclei and is called a muscl ...
s. However, during early childhood and throughout adulthood, ANP expression is suppressed or kept to a minimum in the ventricle. Thus, an abnormal induction of the ''ANP'' gene can lead to ventricular hypertrophy and severe cardiac consequences. In order to maintain the repression of the gene, NRSF (neuron-restrictive silencer factor) or REST binds to the NRSE region in the 3’untranslated region of the ''ANP'' gene. Furthermore, the NRSF-NRSE complex recruits a transcriptional corepressor known as mSin3. This leads to the activity of histone deacetylase in the region and the repression of the gene. Therefore, studies have revealed the correlation between REST/NRSF and RE1/NRSE in regulating the ''ANP'' gene expression in ventricular myocytes. A mutation in either the NRSF or NRSE can lead to an undesirable development of ventricular myocytes, due to lack of repression, which can then cause ventricular hypertrophy. Left ventricular hypertrophy, for example, increases an individual's chance of sudden death due to a ventricular arrhythmia resulting from the increased ventricular mass. In addition to the influence on the ''ANP'' gene, the NRSE sequence regulates other cardiac embryonic genes, such as
brain natriuretic peptide Brain natriuretic peptide 32 (BNP), also known as B-type natriuretic peptide, is a hormone secreted by cardiomyocytes in the heart ventricles in response to stretching caused by increased ventricular blood volume. Along with NT-proBNP, BNP is on ...
BNP, skeletal α-actin, and Na, K – ATPase α3 subunit. Hence, the regulatory activity of both NRSE and NRSF in mammals prevents not only neural dysfunctions but also physiological and phenotypical abnormalities in other non-neuronal regions of the body.


Mutations in polycomb-group response elements (PREs)

The Polycomb-group (PcG) regulatory complexes are known for their influence in the
epigenetic In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are "o ...
regulation of stem cells, especifically in
hematopoietic Haematopoiesis (, from Greek , 'blood' and 'to make'; also hematopoiesis in American English; sometimes also h(a)emopoiesis) is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells. ...
stem cells. The
Polycomb Repressive Complex 1 Polycomb repressive complex 1 (PRC1) is one of the two classes of Polycomb Repressive complexes, the other being PRC2. Polycomb-group proteins play a major role in transcriptional regulation during development. Polycomb Repressive Complexes PRC1 an ...
(PRC 1) is directly involved in the process of hematopoiesis, and functions together with, for example, the PcG gene “
Bmi1 Polycomb complex protein BMI-1 also known as polycomb group RING finger protein 4 (PCGF4) or RING finger protein 51 (RNF51) is a protein that in humans is encoded by the ''BMI1'' gene (B cell-specific Moloney murine leukemia virus integration ...
”. Studies in mice indicate that organisms with mutated “Bmi1” demonstrate deficient mitochondrial functioning, and also hindered the ability of hematopoietic cells to self-renew. Likewise, mutations in PRC2 genes were related to hematological conditions such as
acute lymphoblastic leukemia Acute lymphoblastic leukemia (ALL) is a cancer of the lymphoid line of blood cells characterized by the development of large numbers of immature lymphocytes. Symptoms may include feeling tired, pale skin color, fever, easy bleeding or bruisin ...
(ALL), which is a form of leukemia. Hence, Polycomb-group genes and proteins are involved in the proper maintenance of hematopoiesis in the body.


References


External links

* {{Transcription Gene expression