HOME

TheInfoList



OR:

Shape waves are excitations propagating along Josephson vortices or
fluxons In physics, a fluxon is a quantum of electromagnetic flux. The term may have any of several related meanings. Superconductivity In the context of superconductivity, in type II superconductors fluxons (also known as Abrikosov vortices) can fo ...
. In the case of two-dimensional
Josephson junctions In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mech ...
(thick
long Josephson junction In superconductivity, a long Josephson junction (LJJ) is a Josephson junction which has one or more dimensions longer than the Josephson penetration depth \lambda_J. This definition is not strict. In terms of underlying model a ''short Josephson ...
s with an extra dimension) described by the 2D sine-Gordon equation, shape waves are distortions of a
Josephson vortex In superconductivity, a Josephson vortex (after Brian Josephson from Cambridge University) is a quantum vortex of supercurrents in a Josephson junction (see Josephson effect). The supercurrents circulate around the vortex center which is situated ...
line of an arbitrary profile. Shape waves have remarkable properties exhibiting Lorentz contraction and
time dilation In physics and relativity, time dilation is the difference in the elapsed time as measured by two clocks. It is either due to a relative velocity between them ( special relativistic "kinetic" time dilation) or to a difference in gravitational ...
similar to that in
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
. Position of the shape wave excitation on a
Josephson vortex In superconductivity, a Josephson vortex (after Brian Josephson from Cambridge University) is a quantum vortex of supercurrents in a Josephson junction (see Josephson effect). The supercurrents circulate around the vortex center which is situated ...
acts like a “minute-hand” showing the time in the rest-frame associated with the vortex. At some conditions, a moving vortex with the shape excitation can have less energy than the same vortex without it.


References

* Waves {{physics-stub