Long Josephson Junction
   HOME
*





Long Josephson Junction
In superconductivity, a long Josephson junction (LJJ) is a Josephson junction which has one or more dimensions longer than the Josephson penetration depth \lambda_J. This definition is not strict. In terms of underlying model a ''short Josephson junction'' is characterized by the Josephson phase \phi(t), which is only a function of time, but not of coordinates i.e. the Josephson junction is assumed to be point-like in space. In contrast, in a long Josephson junction the Josephson phase can be a function of one or two spatial coordinates, i.e., \phi(x,t) or \phi(x,y,t). Simple model: the sine-Gordon equation The simplest and the most frequently used model which describes the dynamics of the Josephson phase \phi in LJJ is the so-called perturbed sine-Gordon equation. For the case of 1D LJJ it looks like: where subscripts x and t denote partial derivatives with respect to x and t, \lambda_J is the Josephson penetration depth, \omega_p is the Josephson plasma frequency, \omega ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superconductivity
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source. The superconductivity phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. Like ferromagnetism and atomic spectral lines, superconductivity is a phenomenon which can only be explained by quantum mechanics. It is characterized by the Meissner effect, the complete ejection of magnetic field lines from the interior of the superconductor during its transitions into t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Josephson Junction
In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mechanics are observable at ordinary, rather than atomic, scale. The Josephson effect has many practical applications because it exhibits a precise relationship between different physics quantities, such as voltage and frequency, facilitating highly accurate measurements. The Josephson effect produces a current, known as a supercurrent, that flows continuously without any voltage applied, across a device known as a Josephson junction (JJ). These consist of two or more superconductors coupled by a weak link. The weak link can be a thin insulating barrier (known as a superconductor–insulator–superconductor junction, or S-I-S), a short section of non-superconducting metal (S-N-S), or a physical constriction that weakens the superconductivit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Josephson Penetration Depth
In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mechanics are observable at ordinary, rather than atomic, scale. The Josephson effect has many practical applications because it exhibits a precise relationship between different physics quantities, such as voltage and frequency, facilitating highly accurate measurements. The Josephson effect produces a current, known as a supercurrent, that flows continuously without any voltage applied, across a device known as a Josephson junction (JJ). These consist of two or more superconductors coupled by a weak link. The weak link can be a thin insulating barrier (known as a superconductor–insulator–superconductor junction, or S-I-S), a short section of non-superconducting metal (S-N-S), or a physical constriction that weakens the superconductivit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Josephson Phase
In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mechanics are observable at ordinary, rather than atomic, scale. The Josephson effect has many practical applications because it exhibits a precise relationship between different physics quantities, such as voltage and frequency, facilitating highly accurate measurements. The Josephson effect produces a current, known as a supercurrent, that flows continuously without any voltage applied, across a device known as a Josephson junction (JJ). These consist of two or more superconductors coupled by a weak link. The weak link can be a thin insulating barrier (known as a superconductor–insulator–superconductor junction, or S-I-S), a short section of non-superconducting metal (S-N-S), or a physical constriction that weakens the superconductivi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sine-Gordon Equation
The sine-Gordon equation is a nonlinear hyperbolic partial differential equation in 1 + 1 dimensions involving the d'Alembert operator and the sine of the unknown function. It was originally introduced by in the course of study of surfaces of constant negative curvature as the Gauss–Codazzi equation for surfaces of curvature −1 in 3-space, and rediscovered by in their study of crystal dislocations known as the Frenkel–Kontorova model. This equation attracted a lot of attention in the 1970s due to the presence of soliton solutions. Origin of the equation and its name There are two equivalent forms of the sine-Gordon equation. In the ( real) ''space-time coordinates'', denoted (''x'', ''t''), the equation reads: : \varphi_ - \varphi_ + \sin\varphi = 0, where partial derivatives are denoted by subscripts. Passing to the light-cone coordinates (''u'', ''v''), akin to ''asymptotic coordinates'' where : u = \frac, \quad v = \frac, the equation takes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Josephson Plasma Frequency
Josephson is a patronymic surname meaning "son of Joseph". Notable people with the surname include: * Andy Josephson (born 1964), American lawyer and politician * Brian David Josephson (born 1940), Welsh physicist * Duane Josephson (1942–1997), American baseball player * Erland Josephson (1923–2012), Swedish actor and author * Erik Josephson (1864–1929), Swedish architect * Ernst Josephson (1851–1906), Swedish painter * Ian Josephson, Canadian judge * Julien Josephson (1881–1959), American motion picture screenwriter * Karen Josephson (born 1964), American swimmer * Les Josephson (1942–2020), American football player * Mark Josephson (1943–2017), American cardiac electrophysiologist * Matthew Josephson (1899–1978), American journalist and author * Samantha Josephson (died 2019), American murder victim * Sarah Josephson (born 1964), American swimmer * Timothy Josephson, American politician See also * Josephson effect, used in quantum-mechanical circuits, with re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Josephson Characteristic Frequency
Josephson is a patronymic surname meaning "son of Joseph". Notable people with the surname include: * Andy Josephson (born 1964), American lawyer and politician * Brian David Josephson (born 1940), Welsh physicist * Duane Josephson (1942–1997), American baseball player * Erland Josephson (1923–2012), Swedish actor and author * Erik Josephson (1864–1929), Swedish architect * Ernst Josephson (1851–1906), Swedish painter * Ian Josephson, Canadian judge * Julien Josephson (1881–1959), American motion picture screenwriter * Karen Josephson (born 1964), American swimmer * Les Josephson (1942–2020), American football player * Mark Josephson (1943–2017), American cardiac electrophysiologist * Matthew Josephson (1899–1978), American journalist and author * Samantha Josephson (died 2019), American murder victim * Sarah Josephson (born 1964), American swimmer * Timothy Josephson, American politician See also * Josephson effect, used in quantum-mechanical circuits, with re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Critical Current Density
Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine *Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in mission and business critical information systems * Critical theory, a school of thought that critiques society and culture by applying knowledge from the social sciences and the humanities * Critically endangered, a risk status for wild species *Criticality (status), the condition of sustaining a nuclear chain reaction Art, entertainment, and media * ''Critical'' (novel), a medical thriller written by Robin Cook * ''Critical'' (TV series), a Sky 1 TV series * "Critical" (''Person of Interest''), an episode of the American television drama series ''Person of Interest'' *"Critical", a 1999 single by Zion I People *Cr1TiKaL (born 1994), an American YouTuber and Twitch streamer See also * Critic *Criticality (other) *Critical Condi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fluxon
In physics, a fluxon is a quantum of electromagnetic flux. The term may have any of several related meanings. Superconductivity In the context of superconductivity, in type II superconductors fluxons (also known as Abrikosov vortices) can form when the applied field lies between B_ and B_. The fluxon is a small whisker of normal phase surrounded by superconducting phase, and Supercurrents circulate around the normal core. The magnetic field through such a whisker and its neighborhood, which has size of the order of London penetration depth \lambda_L (~100 nm), is quantized because of the phase properties of the magnetic vector potential in quantum electrodynamics, see magnetic flux quantum for details. In the context of long Superconductor-Insulator-Superconductor Josephson tunnel junctions, a fluxon (aka Josephson vortex) is made of circulating supercurrents and has ''no'' normal core in the tunneling barrier. Supercurrents circulate just around the mathematical center of a fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Josephson Vortex
In superconductivity, a Josephson vortex (after Brian Josephson from Cambridge University) is a quantum vortex of supercurrents in a Josephson junction (see Josephson effect). The supercurrents circulate around the vortex center which is situated inside the Josephson barrier, unlike Abrikosov vortices in type-II superconductors, which are located in the superconducting condensate. Abrikosov vortices (after Alexei Abrikosov) in superconductors are characterized by normal cores where the superconducting condensate is destroyed on a scale of the superconducting coherence length ''ξ'' (typically 5-100 nm) . The cores of Josephson vortices are more complex and depend on the physical nature of the barrier. In Superconductor-Normal Metal-Superconductor (SNS) Josephson junctions there exist measurable superconducting correlations induced in the N-barrier by proximity effect from the two neighbouring superconducting electrodes. Similarly to Abrikosov vortices in superconductors, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superconductivity
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source. The superconductivity phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. Like ferromagnetism and atomic spectral lines, superconductivity is a phenomenon which can only be explained by quantum mechanics. It is characterized by the Meissner effect, the complete ejection of magnetic field lines from the interior of the superconductor during its transitions into t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]