A semiconductor is a material which has an
electrical conductivity
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
value falling between that of a
conductor
Conductor or conduction may refer to:
Music
* Conductor (music), a person who leads a musical ensemble, such as an orchestra.
* ''Conductor'' (album), an album by indie rock band The Comas
* Conduction, a type of structured free improvisation ...
, such as copper, and an
insulator, such as glass. Its
resistivity falls as its temperature rises; metals behave in the opposite way. Its conducting properties may be altered in useful ways by introducing impurities ("
doping") into the
crystal structure. When two differently doped regions exist in the same crystal, a
semiconductor junction
A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
is created. The behavior of
charge carrier
In physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. The term is used ...
s, which include
electrons,
ions, and
electron holes, at these junctions is the basis of
diode
A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other.
A diode ...
s,
transistors, and most modern
electronics. Some examples of semiconductors are
silicon,
germanium
Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
,
gallium arsenide
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure.
Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
, and elements near the so-called "
metalloid staircase
A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are ...
" on the
periodic table
The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
. After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes,
solar cells, microwave-frequency
integrated circuit
An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s, and others. Silicon is a critical element for fabricating most electronic circuits.
Semiconductor device
A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity li ...
s can display a range of useful properties, such as passing current more easily in one direction than the other, showing variable resistance, and having sensitivity to light or heat. Because the electrical properties of a semiconductor material can be modified by doping and by the application of electrical fields or light, devices made from semiconductors can be used for amplification, switching, and
energy conversion.
The conductivity of silicon is increased by adding a small amount (of the order of 1 in 10
8) of pentavalent (
antimony,
phosphorus, or
arsenic) or trivalent (
boron
Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
,
gallium
Gallium is a chemical element with the symbol Ga and atomic number 31. Discovered by French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in group 13 of the periodic table and is similar to the other metals of the group (aluminiu ...
,
indium) atoms. This process is known as doping, and the resulting semiconductors are known as doped or extrinsic semiconductors. Apart from doping, the conductivity of a semiconductor can be improved by increasing its temperature. This is contrary to the behavior of a metal, in which conductivity decreases with an increase in temperature.
The modern understanding of the properties of a semiconductor relies on
quantum physics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
to explain the movement of charge carriers in a
crystal lattice
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
: \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n ...
.
Doping greatly increases the number of charge carriers within the crystal. When a doped semiconductor contains free holes, it is called "
p-type", and when it contains free
electrons, it is known as "
n-type". The semiconductor materials used in electronic devices are doped under precise conditions to control the concentration and regions of p- and n-type dopants. A single semiconductor device
crystal can have many p- and n-type regions; the
p–n junction
A p–n junction is a boundary or interface between two types of semiconductor materials, p-type and n-type, inside a single crystal of semiconductor. The "p" (positive) side contains an excess of holes, while the "n" (negative) side contains ...
s between these regions are responsible for the useful electronic behavior. Using a
hot-point probe
A hot point probe is a method of quickly determining whether a semiconductor sample is n-type or p-type. The sample is probed using a voltmeter or ammeter and a heat source, such as a soldering iron, is placed on one of the leads. The heat will ...
, one can determine quickly whether a semiconductor sample is p- or n-type.
Some of the properties of semiconductor materials were observed throughout the mid-19th and first decades of the 20th century. The first practical application of semiconductors in electronics was the 1904 development of the
cat's-whisker detector, a primitive semiconductor diode used in early
radio receivers. Developments in quantum physics led in turn to the invention of the
transistor in 1947 and the integrated circuit in 1958.
Properties
Variable electrical conductivity
Semiconductors in their natural state are poor conductors because a
current requires the flow of electrons, and semiconductors have their
valence bands filled, preventing the entire flow of new electrons. Several developed techniques allow semiconducting materials to behave like conducting materials, such as
doping or
gating. These modifications have two outcomes: n-type and p-type. These refer to the excess or shortage of electrons, respectively. A balanced number of electrons would cause a current to flow throughout the material.
Heterojunctions
Heterojunctions occur when two differently doped semiconducting materials are joined. For example, a configuration could consist of p-doped and n-doped
germanium
Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
. This results in an exchange of electrons and holes between the differently doped semiconducting materials. The n-doped germanium would have an excess of electrons, and the p-doped germanium would have an excess of holes. The transfer occurs until an equilibrium is reached by a process called
recombination, which causes the migrating electrons from the n-type to come in contact with the migrating holes from the p-type. The result of this process is a narrow strip of immobile
ions, which causes an
electric field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
across the junction.
Excited electrons
A difference in electric potential on a semiconducting material would cause it to leave thermal equilibrium and create a non-equilibrium situation. This introduces electrons and holes to the system, which interact via a process called
ambipolar diffusion. Whenever thermal equilibrium is disturbed in a semiconducting material, the number of holes and electrons changes. Such disruptions can occur as a result of a temperature difference or
photons, which can enter the system and create electrons and holes. The process that creates and annihilates electrons and holes are called
generation and recombination, respectively.
Light emission
In certain semiconductors, excited electrons can relax by emitting light instead of producing heat. These semiconductors are used in the construction of
light-emitting diodes and fluorescent
quantum dot
Quantum dots (QDs) are semiconductor particles a few nanometres in size, having light, optical and electronics, electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanote ...
s.
High thermal conductivity
Semiconductors with high thermal conductivity can be used for heat dissipation and improving thermal management of electronics.
Thermal energy conversion
Semiconductors have large
thermoelectric power factor
Thermoelectric materials show the thermoelectric effect in a strong or convenient form.
The ''thermoelectric effect'' refers to phenomena by which either a temperature difference creates an electric potential or an electric current creates a te ...
s making them useful in
thermoelectric generators, as well as high
thermoelectric figures of merit making them useful in
thermoelectric cooler
Thermoelectric cooling uses the Peltier effect to create a heat flux at the junction of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side o ...
s.
Materials
A large number of elements and compounds have semiconducting properties, including:
[B. G. Yacobi, ''Semiconductor Materials: An Introduction to Basic Principles'', Springer 2003 , pp. 1–3.]
* Certain pure elements are found in
group 14 of the
periodic table
The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
; the most commercially important of these elements are
silicon and
germanium
Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
. Silicon and germanium are used here effectively because they have 4 valence electrons in their outermost shell, which gives them the ability to gain or lose electrons equally at the same time.
*
Binary compounds, particularly between elements in groups 13 and 15, such as
gallium arsenide
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure.
Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
, groups 12 and 16, groups 14 and 16, and between different group-14 elements, e.g.
silicon carbide.
* Certain ternary compounds, oxides, and alloys.
*
Organic semiconductors, made of
organic compounds.
* Semiconducting
metal–organic frameworks.
The most common semiconducting materials are crystalline solids, but
amorphous
In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal.
Etymology
The term comes from the Greek ''a'' ("wi ...
and liquid semiconductors are also known. These include
hydrogenated amorphous silicon
Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs.
Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films onto ...
and mixtures of
arsenic,
selenium, and
tellurium in a variety of proportions. These compounds share with better-known semiconductors the properties of intermediate conductivity and a rapid variation of conductivity with temperature, as well as occasional
negative resistance. Such disordered materials lack the rigid crystalline structure of conventional semiconductors such as silicon. They are generally used in
thin film structures, which do not require material of higher electronic quality, being relatively insensitive to impurities and radiation damage.
Preparation of semiconductor materials
Almost all of today's electronic technology involves the use of semiconductors, with the most important aspect being the
integrated circuit
An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
(IC), which are found in
desktops,
laptops, scanners,
cell-phones, and other electronic devices. Semiconductors for ICs are mass-produced. To create an ideal semiconducting material, chemical purity is paramount. Any small imperfection can have a drastic effect on how the semiconducting material behaves due to the scale at which the materials are used.
A high degree of crystalline perfection is also required, since faults in the crystal structure (such as
dislocations,
twins, and
stacking faults) interfere with the semiconducting properties of the material. Crystalline faults are a major cause of defective semiconductor devices. The larger the crystal, the more difficult it is to achieve the necessary perfection. Current mass production processes use crystal
ingots between in diameter, grown as cylinders and sliced into
wafers.
There is a combination of processes that are used to prepare semiconducting materials for ICs. One process is called
thermal oxidation, which forms
silicon dioxide on the surface of the
silicon. This is used as a
gate insulator and
field oxide. Other processes are called
photomasks and
photolithography
In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect ...
. This process is what creates the patterns on the circuit in the integrated circuit.
Ultraviolet light is used along with a
photoresist layer to create a chemical change that generates the patterns for the circuit.
The etching is the next process that is required. The part of the silicon that was not covered by the
photoresist layer from the previous step can now be etched. The main process typically used today is called
plasma etching. Plasma etching usually involves an
etch gas pumped in a low-pressure chamber to create
plasma
Plasma or plasm may refer to:
Science
* Plasma (physics), one of the four fundamental states of matter
* Plasma (mineral), a green translucent silica mineral
* Quark–gluon plasma, a state of matter in quantum chromodynamics
Biology
* Blood pla ...
. A common etch gas is
chlorofluorocarbon, or more commonly known
Freon. A high
radio-frequency voltage between the
cathode and
anode is what creates the plasma in the chamber. The
silicon wafer is located on the cathode, which causes it to be hit by the positively charged ions that are released from the plasma. The result is silicon that is etched
anisotropically.
The last process is called
diffusion. This is the process that gives the semiconducting material its desired semiconducting properties. It is also known as
doping. The process introduces an impure atom to the system, which creates the
p–n junction
A p–n junction is a boundary or interface between two types of semiconductor materials, p-type and n-type, inside a single crystal of semiconductor. The "p" (positive) side contains an excess of holes, while the "n" (negative) side contains ...
. To get the impure atoms embedded in the silicon wafer, the wafer is first put in a 1,100 degree Celsius chamber. The atoms are injected in and eventually diffuse with the silicon. After the process is completed and the silicon has reached room temperature, the doping process is done and the semiconducting material is ready to be used in an integrated circuit.
Physics of semiconductors
Energy bands and electrical conduction
Semiconductors are defined by their unique electric conductive behavior, somewhere between that of a conductor and an insulator. The differences between these materials can be understood in terms of the
quantum states for electrons, each of which may contain zero or one electron (by the
Pauli exclusion principle). These states are associated with the
electronic band structure of the material.
Electrical conductivity
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
arises due to the presence of electrons in states that are
delocalized (extending through the material), however in order to transport electrons a state must be ''partially filled'', containing an electron only part of the time. If the state is always occupied with an electron, then it is inert, blocking the passage of other electrons via that state. The energies of these quantum states are critical since a state is partially filled only if its energy is near the
Fermi level
The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by ''µ'' or ''E''F
for brevity. The Fermi level does not include the work required to remove ...
(see
Fermi–Dirac statistics
Fermi–Dirac statistics (F–D statistics) is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac di ...
).
High conductivity in material comes from it having many partially filled states and much state delocalization.
Metals are good
electrical conductors and have many partially filled states with energies near their Fermi level.
Insulators, by contrast, have few partially filled states, their Fermi levels sit within
band gaps with few energy states to occupy. Importantly, an insulator can be made to conduct by increasing its temperature: heating provides energy to promote some electrons across the bandgap, inducing partially filled states in both the band of states beneath the band gap (
valence band) and the band of states above the bandgap (
conduction band
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
). An (intrinsic) semiconductor has a bandgap that is smaller than that of an insulator and at room temperature, significant numbers of electrons can be excited to cross the band gap.
[ Charles Kittel (1995) '' Introduction to Solid State Physics'', 7th ed. Wiley, .]
A pure semiconductor, however, is not very useful, as it is neither a very good insulator nor a very good conductor.
However, one important feature of semiconductors (and some insulators, known as ''semi-insulators'') is that their conductivity can be increased and controlled by
doping with impurities and
gating with electric fields. Doping and gating move either the conduction or valence band much closer to the Fermi level and greatly increase the number of partially filled states.
Some
wider-bandgap semiconductor materials are sometimes referred to as semi-insulators. When undoped, these have electrical conductivity nearer to that of electrical insulators, however they can be doped (making them as useful as semiconductors). Semi-insulators find niche applications in micro-electronics, such as substrates for
HEMT
A high-electron-mobility transistor (HEMT), also known as heterostructure FET (HFET) or modulation-doped FET (MODFET), is a field-effect transistor incorporating a junction between two materials with different band gaps (i.e. a heterojunction) ...
. An example of a common semi-insulator is
gallium arsenide
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure.
Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
. Some materials, such as
titanium dioxide, can even be used as insulating materials for some applications, while being treated as wide-gap semiconductors for other applications.
Charge carriers (electrons and holes)
The partial filling of the states at the bottom of the conduction band can be understood as adding electrons to that band. The electrons do not stay indefinitely (due to the natural thermal
recombination) but they can move around for some time. The actual concentration of electrons is typically very dilute, and so (unlike in metals) it is possible to think of the electrons in the conduction band of a semiconductor as a sort of classical
ideal gas, where the electrons fly around freely without being subject to the
Pauli exclusion principle. In most semiconductors, the conduction bands have a parabolic
dispersion relation, and so these electrons respond to forces (electric field, magnetic field, etc.) much as they would in a vacuum, though with a different
effective mass.
Because the electrons behave like an ideal gas, one may also think about conduction in very simplistic terms such as the
Drude model
The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials (especially metals). Basically, Ohm's law was well established and stated that the current ''J'' and voltage ...
, and introduce concepts such as
electron mobility
In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobili ...
.
For partial filling at the top of the valence band, it is helpful to introduce the concept of an
electron hole. Although the electrons in the valence band are always moving around, a completely full valence band is inert, not conducting any current. If an electron is taken out of the valence band, then the trajectory that the electron would normally have taken is now missing its charge. For the purposes of electric current, this combination of the full valence band, minus the electron, can be converted into a picture of a completely empty band containing a positively charged particle that moves in the same way as the electron. Combined with the ''negative'' effective mass of the electrons at the top of the valence band, we arrive at a picture of a positively charged particle that responds to electric and magnetic fields just as a normal positively charged particle would do in a vacuum, again with some positive effective mass.
This particle is called a hole, and the collection of holes in the valence band can again be understood in simple classical terms (as with the electrons in the conduction band).
Carrier generation and recombination
When
ionizing radiation
Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
strikes a semiconductor, it may excite an electron out of its energy level and consequently leave a hole. This process is known as
''electron-hole pair generation''. Electron-hole pairs are constantly generated from
thermal energy as well, in the absence of any external energy source.
Electron-hole pairs are also apt to recombine.
Conservation of energy
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means th ...
demands that these recombination events, in which an electron loses an amount of
energy larger than the
band gap, be accompanied by the emission of thermal energy (in the form of
phonon
In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
s) or radiation (in the form of
photons).
In some states, the generation and recombination of electron-hole pairs are in equipoise. The number of electron-hole pairs in the
steady state at a given temperature is determined by
quantum statistical mechanics. The precise
quantum mechanical mechanisms of generation and recombination are governed by the
conservation of energy
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means th ...
and
conservation of momentum.
As the probability that electrons and holes meet together is proportional to the product of their numbers, the product is in the steady-state nearly constant at a given temperature, providing that there is no significant electric field (which might "flush" carriers of both types, or move them from neighbor regions containing more of them to meet together) or externally driven pair generation. The product is a function of the temperature, as the probability of getting enough thermal energy to produce a pair increases with temperature, being approximately exp(−''E''
G/''kT''), where ''k'' is
Boltzmann's constant, ''T'' is the absolute temperature and ''E''
G is bandgap.
The probability of meeting is increased by carrier traps – impurities or dislocations which can trap an electron or hole and hold it until a pair is completed. Such carrier traps are sometimes purposely added to reduce the time needed to reach the steady-state.
Doping
The conductivity of semiconductors may easily be modified by introducing impurities into their
crystal lattice
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
: \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n ...
. The process of adding controlled impurities to a semiconductor is known as doping. The amount of impurity, or dopant, added to an ''
intrinsic'' (pure) semiconductor varies its level of conductivity. Doped semiconductors are referred to as
''extrinsic''. By adding impurity to the pure semiconductors, the electrical conductivity may be varied by factors of thousands or millions.
A 1 cm
3 specimen of a metal or semiconductor has the order of 10
22 atoms. In a metal, every atom donates at least one free electron for conduction, thus 1 cm
3 of metal contains on the order of 10
22 free electrons, whereas a 1 cm
3 sample of pure germanium at 20°C contains about atoms, but only free electrons and holes. The addition of 0.001% of
arsenic (an impurity) donates an extra ''10
17'' free electrons in the same volume and the electrical conductivity is increased by a factor of ''10,000''.
The materials chosen as suitable dopants depend on the atomic properties of both the dopant and the material to be doped. In general, dopants that produce the desired controlled changes are classified as either electron
acceptors or
donors. Semiconductors doped with ''donor'' impurities are called ''n-type'', while those doped with ''acceptor'' impurities are known as ''p-type''. The n and p type designations indicate which charge carrier acts as the material's
majority carrier. The opposite carrier is called the
minority carrier, which exists due to thermal excitation at a much lower concentration compared to the majority carrier.
For example, the pure semiconductor
silicon has four valence electrons that bond each silicon atom to its neighbors. In silicon, the most common dopants are ''group III'' and ''group V'' elements. Group III elements all contain three valence electrons, causing them to function as acceptors when used to dope silicon. When an acceptor atom replaces a silicon atom in the crystal, a vacant state (an electron "hole") is created, which can move around the lattice and function as a charge carrier. Group V elements have five valence electrons, which allows them to act as a donor; substitution of these atoms for silicon creates an extra free electron. Therefore, a silicon crystal doped with
boron
Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
creates a p-type semiconductor whereas one doped with
phosphorus results in an n-type material.
During
manufacture
Manufacturing is the creation or production of goods with the help of equipment, labor, machines, tools, and chemical or biological processing or formulation. It is the essence of secondary sector of the economy. The term may refer to a rang ...
, dopants can be diffused into the semiconductor body by contact with gaseous compounds of the desired element, or
ion implantation can be used to accurately position the doped regions.
Amorphous semiconductors
Some materials, when rapidly cooled to a glassy amorphous state, have semiconducting properties. These include B,
Si, Ge, Se, and Te, and there are multiple theories to explain them.
Early history of semiconductors
The history of the understanding of semiconductors begins with experiments on the electrical properties of materials. The properties of the time-temperature coefficient of resistance, rectification, and light-sensitivity were observed starting in the early 19th century.
Thomas Johann Seebeck was the first to notice an
effect due to semiconductors, in 1821. In 1833,
Michael Faraday reported that the resistance of specimens of
silver sulfide
Silver sulfide is an inorganic compound with the formula . A dense black solid, it is the only sulfide of silver. It is useful as a photosensitizer in photography. It constitutes the tarnish that forms over time on silverware and other silver obje ...
decreases when they are heated. This is contrary to the behavior of metallic substances such as copper. In 1839,
Alexandre Edmond Becquerel reported observation of a voltage between a solid and a liquid electrolyte, when struck by light, the
photovoltaic effect. In 1873,
Willoughby Smith observed that
selenium resistor
A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active el ...
s exhibit decreasing resistance when light falls on them. In 1874,
Karl Ferdinand Braun observed conduction and
rectification
Rectification has the following technical meanings:
Mathematics
* Rectification (geometry), truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points
* Rectifiable curve, in mathematics
* Recti ...
in metallic
sulfide
Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds lar ...
s, although this effect had been discovered much earlier by Peter Munck af Rosenschold (
sv) writing for the Annalen der Physik und Chemie in 1835,
and
Arthur Schuster found that a copper oxide layer on wires has rectification properties that ceases, when the wires are cleaned.
William Grylls Adams and Richard Evans Day observed the photovoltaic effect in selenium in 1876.
A unified explanation of these phenomena required a theory of
solid-state physics
Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the l ...
, which developed greatly in the first half of the 20th century. In 1878
Edwin Herbert Hall
Edwin Herbert Hall (November 7, 1855 – November 20, 1938) was an American physicist, who discovered the eponymous Hall effect. Hall conducted thermoelectric research and also wrote numerous physics textbooks and laboratory manuals.
Biograp ...
demonstrated the deflection of flowing charge carriers by an applied magnetic field, the
Hall effect. The discovery of the
electron by
J.J. Thomson in 1897 prompted theories of electron-based conduction in solids.
Karl Baedeker, by observing a Hall effect with the reverse sign to that in metals, theorized that copper iodide had positive charge carriers. Johan Koenigsberger classified solid materials like metals, insulators, and "variable conductors" in 1914 although his student Josef Weiss already introduced the term ''Halbleiter'' (a semiconductor in modern meaning) in his Ph.D. thesis in 1910.
Felix Bloch published a theory of the movement of electrons through atomic lattices in 1928. In 1930, B. Gudden stated that conductivity in semiconductors was due to minor concentrations of impurities. By 1931, the band theory of conduction had been established by
Alan Herries Wilson
Sir Alan Herries Wilson (2 July 1906 – 30 September 1995), was a British mathematician and industrialist. He was educated at Wallasey Grammar School and at Emmanuel College, Cambridge, obtaining a BA degree in mathematics in 1926. His graduate ...
and the concept of band gaps had been developed.
Walter H. Schottky and
Nevill Francis Mott developed models of the potential barrier and of the characteristics of a
metal–semiconductor junction. By 1938, Boris Davydov had developed a theory of the copper-oxide rectifier, identifying the effect of the
p–n junction
A p–n junction is a boundary or interface between two types of semiconductor materials, p-type and n-type, inside a single crystal of semiconductor. The "p" (positive) side contains an excess of holes, while the "n" (negative) side contains ...
and the importance of minority carriers and surface states.
Agreement between theoretical predictions (based on developing quantum mechanics) and experimental results was sometimes poor. This was later explained by
John Bardeen
John Bardeen (; May 23, 1908 – January 30, 1991) was an American physicist and engineer. He is the only person to be awarded the Nobel Prize in Physics twice: first in 1956 with William Shockley and Walter Brattain for the invention of the tran ...
as due to the extreme "structure sensitive" behavior of semiconductors, whose properties change dramatically based on tiny amounts of impurities.
Commercially pure materials of the 1920s containing varying proportions of trace contaminants produced differing experimental results. This spurred the development of improved material refining techniques, culminating in modern semiconductor refineries producing materials with parts-per-trillion purity.
Devices using semiconductors were at first constructed based on empirical knowledge before semiconductor theory provided a guide to the construction of more capable and reliable devices.
Alexander Graham Bell
Alexander Graham Bell (, born Alexander Bell; March 3, 1847 – August 2, 1922) was a Scottish-born inventor, scientist and engineer who is credited with patenting the first practical telephone. He also co-founded the American Telephone and Te ...
used the light-sensitive property of selenium to
transmit sound
Transmit is a file transfer client program for macOS. Developed by Panic, Transmit is shareware. After a seven-day trial period, the product can only be used for seven-minute sessions until it has been purchased. Originally built as an FTP client ...
over a beam of light in 1880. A working solar cell, of low efficiency, was constructed by
Charles Fritts in 1883, using a metal plate coated with selenium and a thin layer of gold; the device became commercially useful in photographic light meters in the 1930s.
Point-contact microwave detector rectifiers made of lead sulfide were used by
Jagadish Chandra Bose
Sir Jagadish Chandra Bose
(;, ; 30 November 1858 – 23 November 1937) was a biologist, physicist, Botany, botanist and an early writer of science fiction. He was a pioneer in the investigation of radio microwave optics, made significant contr ...
in 1904; the
cat's-whisker detector using natural galena or other materials became a common device in the
development of radio. However, it was somewhat unpredictable in operation and required manual adjustment for best performance. In 1906,
H.J. Round observed light emission when electric current passed through
silicon carbide crystals, the principle behind the
light-emitting diode.
Oleg Losev observed similar light emission in 1922, but at the time the effect had no practical use. Power rectifiers, using copper oxide and selenium, were developed in the 1920s and became commercially important as an alternative to
vacuum tube rectifiers.
The first semiconductor device
A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity li ...
s used galena
Galena, also called lead glance, is the natural mineral form of lead(II) sulfide (PbS). It is the most important ore of lead and an important source of silver.
Galena is one of the most abundant and widely distributed sulfide minerals. It cryst ...
, including German physicist Ferdinand Braun's crystal detector in 1874 and Bengali physicist Jagadish Chandra Bose's radio crystal detector in 1901.
In the years preceding World War II, infrared detection and communications devices prompted research into lead-sulfide and lead-selenide materials. These devices were used for detecting ships and aircraft, for infrared rangefinders, and for voice communication systems. The point-contact crystal detector became vital for microwave radio systems since available vacuum tube devices could not serve as detectors above about 4000 MHz; advanced radar systems relied on the fast response of crystal detectors. Considerable research and development of silicon materials occurred during the war to develop detectors of consistent quality.
Early transistors
Detector and power rectifiers could not amplify a signal. Many efforts were made to develop a solid-state amplifier and were successful in developing a device called the point contact transistor
The point-contact transistor was the first type of transistor to be successfully demonstrated. It was developed by research scientists John Bardeen and Walter Houser Brattain, Walter Brattain at Bell Laboratories in December 1947. They worked in ...
which could amplify 20dB or more.[Peter Robin Morris (1990) ''A History of the World Semiconductor Industry'', IET, , pp. 11–25] In 1922, Oleg Losev developed two-terminal, negative resistance amplifiers for radio, but he perished in the Siege of Leningrad
The siege of Leningrad (russian: links=no, translit=Blokada Leningrada, Блокада Ленинграда; german: links=no, Leningrader Blockade; ) was a prolonged military blockade undertaken by the Axis powers against the Soviet city of L ...
after successful completion. In 1926, Julius Edgar Lilienfeld
Julius Edgar Lilienfeld (April 18, 1882 – August 28, 1963) was an Austro-Hungarian, and later American (where he moved in 1921) physicist and electrical engineer, who was credited with the first patent on the field-effect (FET) (1925). Be ...
patented a device resembling a field-effect transistor, but it was not practical. R. Hilsch and R. W. Pohl in 1938 demonstrated a solid-state amplifier using a structure resembling the control grid of a vacuum tube; although the device displayed power gain, it had a cut-off frequency of one cycle per second, too low for any practical applications, but an effective application of the available theory. At Bell Labs, William Shockley and A. Holden started investigating solid-state amplifiers in 1938. The first p–n junction in silicon was observed by Russell Ohl about 1941 when a specimen was found to be light-sensitive, with a sharp boundary between p-type impurity at one end and n-type at the other. A slice cut from the specimen at the p–n boundary developed a voltage when exposed to light.
The first working transistor was a point-contact transistor
The point-contact transistor was the first type of transistor to be successfully demonstrated. It was developed by research scientists John Bardeen and Walter Brattain at Bell Laboratories in December 1947. They worked in a group led by physicis ...
invented by John Bardeen
John Bardeen (; May 23, 1908 – January 30, 1991) was an American physicist and engineer. He is the only person to be awarded the Nobel Prize in Physics twice: first in 1956 with William Shockley and Walter Brattain for the invention of the tran ...
, Walter Houser Brattain, and William Shockley at Bell Labs in 1947. Shockley had earlier theorized a field-effect amplifier made from germanium and silicon, but he failed to build such a working device, before eventually using germanium to invent the point-contact transistor. In France, during the war, Herbert Mataré had observed amplification between adjacent point contacts on a germanium base. After the war, Mataré's group announced their "Transistron
A transistor is a semiconductor device with at least three terminals for connection to an electric circuit. In the common case, the third terminal controls the flow of current between the other two terminals. This can be used for amplification, a ...
" amplifier only shortly after Bell Labs announced the " transistor".
In 1954, physical chemist Morris Tanenbaum
Morris Tanenbaum (November 10, 1928 - February 26, 2023) was an American physical chemist and executive who worked at Bell Laboratories and AT&T Corporation.
Tanenbaum made significant contributions in the fields of transistor development and se ...
fabricated the first silicon junction transistor at Bell Labs. However, early junction transistors were relatively bulky devices that were difficult to manufacture on a mass-production basis, which limited them to a number of specialised applications.
See also
* Deathnium
Deathnium is a name given by early electronic engineers to a trap in semiconductors that reduces the lifetime of both electron and hole charge carriers. It is considered the fifth of the imperfections that must be considered in semiconductor crysta ...
* Semiconductor device fabrication
* Semiconductor industry
The semiconductor industry is the aggregate of companies engaged in the design and fabrication of semiconductors and semiconductor devices, such as transistors and integrated circuits. It formed around 1960, once the fabrication of semiconduct ...
* Semiconductor characterization techniques
{{Use mdy dates, date = March 2019
Semiconductor characterization techniques are used to characterize a semiconductor material or device (PN junction, Schottky diode, etc.). Some examples of semiconductor properties that could be characterized ...
* Transistor count
References
Further reading
*
*
*
*
*
* G. B. Abdullayev, T. D. Dzhafarov, S. Torstveit (Translator), ''Atomic Diffusion in Semiconductor Structures,'' Gordon & Breach Science Pub., 1987
External links
Feynman's lecture on Semiconductors
HowStuffWorks
* Calculator for th
intrinsic carrier concentration
in silicon
Physical Properties of Semiconductors]
Semiconductor Manufacturer List
ABACUS
Introduction to Semiconductor Devices – by Gerhard Klimeck and Dragica Vasileska, online learning resource with simulation tools on nanoHUB
Organic Semiconductors page
DoITPoMS Teaching and Learning Package- "Introduction to Semiconductors"
The Virtual Museum of Semiconductors Organizations
{{Authority control
Semiconductors
A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...