Scanning Capacitance Microscopy
   HOME

TheInfoList



OR:

Scanning capacitance microscopy (SCM) is a variety of
scanning probe microscopy Scan may refer to: Acronyms * Schedules for Clinical Assessment in Neuropsychiatry (SCAN), a psychiatric diagnostic tool developed by WHO * Shared Check Authorization Network (SCAN), a database of bad check writers and collection agency for bad ...
in which a narrow probe electrode is positioned in contact or close proximity of a sample's surface and scanned. SCM characterizes the surface of the sample using information obtained from the change in electrostatic capacitance between the surface and the probe.


History

The name Scanning Capacitance Microscopy was first used to describe a quality control tool for the RCA/CED (
Capacitance Electronic Disc The Capacitance Electronic Disc (CED) is an analog video, analog video disc playback system developed by RCA, in which video and audio could be played back on a TV set using a special stylus and high-density groove system similar to phonograph re ...
), a video disk technology that was a predecessor of the DVD. It has since been adapted for use in combination with scanned probe microscopes for measuring other systems and materials with semiconductor doping profiling being the most prevalent. SCM applied to semiconductors uses an ultra-sharp conducting probe (often Pt/Ir or Co/Cr thin film metal coating applied to an etched silicon probe) to form a metal-insulator-semiconductor (MIS/MOS) capacitor with a semiconductor sample if a native oxide is present. When no oxide is present, a Schottky capacitor is formed. With the probe and surface in contact, a bias applied between the tip and sample will generate capacitance variations between the tip and sample. The capacitance microscopy method developed by Williams et al. used the RCA video disk capacitance sensor connected to the probe to detect the tiny changes in semiconductor surface capacitance (attofarads to femptofarads). The tip is then scanned across the semiconductor's surface in while the tip's height is controlled by conventional contact force feedback. By applying an alternating bias to the metal-coated probe, carriers are alternately accumulated and depleted within the semiconductor's surface layers, changing the tip-sample capacitance. The magnitude of this change in capacitance with the applied voltage gives information about the concentration of carriers (SCM amplitude data), whereas the difference in phase between the capacitance change and the applied, alternating bias carries information about the sign of the charge carriers (SCM phase data). Because SCM functions even through an insulating layer, a finite conductivity is not required to measure the electrical properties.


Resolution

On the conducting surfaces, the resolution limit is estimated as 2 nm. For the high resolution, the quick analysis of capacitance of a capacitor with rough electrode is required. This SCM resolution is an order of magnitude better than that estimated for the
atomic nanoscope The atomic de Broglie microscope (also atomic nanoscope, neutral beam microscope, or scanning helium microscope when helium is used as the probing atom) is an imaging system which is expected to provide resolution at the nanometer scale. It is some ...
; however, as other kinds of the probe microscopy, SCM requires careful preparation of the analyzed surface, which is supposed to be almost flat.


Applications

Owing to the high spatial resolution of SCM, it is a useful nanospectroscopy characterization tool. Some applications of the SCM technique involve mapping the
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
profile in a
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
device on a 10 nm scale, quantification of the local
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
properties in
hafnium Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri M ...
-based high-k dielectric films grown by an
atomic layer deposition Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called precursors (also ...
method and the study of the room temperature resonant electronic structure of individual
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
quantum dot Quantum dots (QDs) are semiconductor particles a few nanometres in size, having light, optical and electronics, electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanote ...
with different shapes. The high sensitivity of dynamical scanning capacitance microscopy, in which the capacitance signal is modulated periodically by the tip motion of the
atomic force microscope Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the diffr ...
(AFM), was used to image compressible and incompressible strips in a two-dimensional electron gas (
2DEG A two-dimensional electron gas (2DEG) is a scientific model in solid-state physics. It is an electron gas that is free to move in two dimensions, but tightly confined in the third. This tight confinement leads to quantized energy levels for motion ...
) buried 50 nm below an insulating layer in a large magnetic field and at cryogenic temperatures.


References

{{SPM2 Scanning probe microscopy