HOME

TheInfoList



OR:

In mathematics, a root of unity, occasionally called a de Moivre number, is any
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
that yields 1 when raised to some positive
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
power . Roots of unity are used in many branches of mathematics, and are especially important in
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
, the theory of
group character In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information ab ...
s, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also
algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field.


General definition

An ''th root of unity'', where is a positive integer, is a number satisfying the equation :z^n = 1. Unless otherwise specified, the roots of unity may be taken to be
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s (including the number 1, and the number −1 if is even, which are complex with a zero
imaginary part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
), and in this case, the th roots of unity are :\exp\left(\frac\right)=\cos\frac+i\sin\frac,\qquad k=0,1,\dots, n-1. However, the defining equation of roots of unity is meaningful over any field (and even over any ring) , and this allows considering roots of unity in . Whichever is the field , the roots of unity in are either complex numbers, if the characteristic of is 0, or, otherwise, belong to a finite field. Conversely, every nonzero element in a finite field is a root of unity in that field. See Root of unity modulo ''n'' and Finite field for further details. An th root of unity is said to be if it is not an th root of unity for some smaller , that is if :z^n=1\quad \text \quad z^m \ne 1 \text m = 1, 2, 3, \ldots, n-1. If ''n'' is a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
, then all th roots of unity, except 1, are primitive. In the above formula in terms of exponential and trigonometric functions, the primitive th roots of unity are those for which and are
coprime integers In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
. Subsequent sections of this article will comply with complex roots of unity. For the case of roots of unity in fields of nonzero characteristic, see . For the case of roots of unity in rings of modular integers, see Root of unity modulo ''n''.


Elementary properties

Every th root of unity is a primitive th root of unity for some , which is the smallest positive integer such that . Any integer power of an th root of unity is also an th root of unity, as :(z^k)^n = z^ = (z^n)^k = 1^k = 1. This is also true for negative exponents. In particular, the reciprocal of an th root of unity is its
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
, and is also an th root of unity: :\frac = z^ = z^ = \bar z. If is an th root of unity and then . Indeed, by the definition of congruence modulo ''n'', for some integer , and hence : z^a = z^ = z^b z^ = z^b (z^n)^k = z^b 1^k = z^b. Therefore, given a power of , one has , where is the remainder of the
Euclidean division In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than ...
of by . Let be a primitive th root of unity. Then the powers , , ..., , are th roots of unity and are all distinct. (If where , then , which would imply that would not be primitive.) This implies that , , ..., , are all of the th roots of unity, since an th- degree
polynomial equation In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field (mathematics), field, often the field of the rational numbers. For many authors, the term '' ...
over a field (in this case the field of complex numbers) has at most solutions. From the preceding, it follows that, if is a primitive th root of unity, then z^a = z^b
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is b ...
a\equiv b \pmod. If is not primitive then a\equiv b \pmod implies z^a = z^b, but the converse may be false, as shown by the following example. If , a non-primitive th root of unity is , and one has z^2 = z^4 = 1, although 2 \not\equiv 4 \pmod. Let be a primitive th root of unity. A power of is a primitive th root of unity for : a = \frac, where \gcd(k,n) is the
greatest common divisor In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers ''x'', ''y'', the greatest common divisor of ''x'' and ''y'' is ...
of and . This results from the fact that is the smallest multiple of that is also a multiple of . In other words, is the
least common multiple In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers ''a'' and ''b'', usually denoted by lcm(''a'', ''b''), is the smallest positive integer that is divisible by bo ...
of and . Thus :a =\frac=\frac=\frac. Thus, if and are
coprime In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
, is also a primitive th root of unity, and therefore there are distinct primitive th roots of unity (where is Euler's totient function). This implies that if is a prime number, all the roots except are primitive. In other words, if is the set of all th roots of unity and is the set of primitive ones, is a
disjoint union In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A ( ...
of the : :\operatorname(n) = \bigcup_\operatorname(d), where the notation means that goes through all the positive
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
s of , including and . Since the cardinality of is , and that of is , this demonstrates the classical formula :\sum_\varphi(d) = n.


Group properties


Group of all roots of unity

The product and the
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/ ...
of two roots of unity are also roots of unity. In fact, if and , then , and , where is the
least common multiple In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers ''a'' and ''b'', usually denoted by lcm(''a'', ''b''), is the smallest positive integer that is divisible by bo ...
of and . Therefore, the roots of unity form an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
under multiplication. This
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
is the torsion subgroup of the circle group.


Group of th roots of unity

For an integer ''n'', the product and the multiplicative inverse of two th roots of unity are also th roots of unity. Therefore, the th roots of unity form an abelian group under multiplication. Given a primitive th root of unity , the other th roots are powers of . This means that the group of the th roots of unity is a
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
. It is worth remarking that the term of ''cyclic group'' originated from the fact that this group is a
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
of the circle group.


Galois group of the primitive th roots of unity

Let \Q(\omega) be the field extension of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s generated over \Q by a primitive th root of unity . As every th root of unity is a power of , the field \Q(\omega) contains all th roots of unity, and \Q(\omega) is a
Galois extension In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ' ...
of \Q. If is an integer, is a primitive th root of unity if and only if and are
coprime In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
. In this case, the map :\omega \mapsto \omega^k induces an automorphism of \Q(\omega), which maps every th root of unity to its th power. Every automorphism of \Q(\omega) is obtained in this way, and these automorphisms form the
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
of \Q(\omega) over the field of the rationals. The rules of exponentiation imply that the
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
of two such automorphisms is obtained by multiplying the exponents. It follows that the map :k\mapsto \left(\omega \mapsto \omega^k\right) defines a group isomorphism between the
units Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * Unit (album), ...
of the ring of integers modulo and the Galois group of \Q(\omega). This shows that this Galois group is abelian, and implies thus that the primitive roots of unity may be expressed in terms of radicals.


Trigonometric expression

De Moivre's formula In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real number and integer it holds that :\big(\cos x + i \sin x\big)^n = \cos nx + i \sin nx, where is the imaginary unit (). ...
, which is valid for all
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
and integers , is :\left(\cos x + i \sin x\right)^n = \cos nx + i \sin nx. Setting gives a primitive th root of unity – one gets :\left(\cos\frac + i \sin\frac\right)^ = \cos 2\pi + i \sin 2\pi = 1, but :\left(\cos\frac + i \sin\frac\right)^ = \cos\frac + i \sin\frac \neq 1 for . In other words, :\cos\frac + i \sin\frac is a primitive th root of unity. This formula shows that in the complex plane the th roots of unity are at the vertices of a regular -sided polygon inscribed in the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
, with one vertex at 1 (see the plots for and on the right). This geometric fact accounts for the term "cyclotomic" in such phrases as
cyclotomic field In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of ...
and cyclotomic polynomial; it is from the Greek roots " cyclo" (circle) plus "
tomos Tomos ( sl, link=yes, Tovarna, Motorjev, Sežana, "Motorcycle Company Sežana") was a moped manufacturer based in Koper, Slovenia. It was founded in 1948. Tomos acquired a production license from Puch to produce moped models under the Tomos name ...
" (cut, divide).
Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that fo ...
:e^ = \cos x + i \sin x, which is valid for all real , can be used to put the formula for the th roots of unity into the form :e^, \quad 0 \le k < n. It follows from the discussion in the previous section that this is a primitive th-root if and only if the fraction is in lowest terms; that is, that and are coprime. An
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
that can be expressed as the
real part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
of the root of unity; that is, as \cos(2\pi k/n), is called a
trigonometric number In mathematics, the values of the trigonometric functions can be expressed approximately, as in \cos (\pi/4) \approx 0.707, or exactly, as in \cos (\pi/ 4)= \sqrt 2 /2. While trigonometric tables contain many approximate values, the exact values ...
.


Algebraic expression

The th roots of unity are, by definition, the roots of the
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
, and are thus algebraic numbers. As this polynomial is not irreducible (except for ), the primitive th roots of unity are roots of an irreducible polynomial of lower degree, called the th cyclotomic polynomial, and often denoted . The degree of is given by Euler's totient function, which counts (among other things) the number of primitive th roots of unity. The roots of are exactly the primitive th roots of unity.
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
can be used to show that cyclotomic polynomials may be conveniently solved in terms of radicals. (The trivial form \sqrt /math> is not convenient, because it contains non-primitive roots, such as 1, which are not roots of the cyclotomic polynomial, and because it does not give the real and imaginary parts separately.) This means that, for each positive integer , there exists an expression built from integers by root extractions, additions, subtractions, multiplications, and divisions (and nothing else), such that the primitive th roots of unity are exactly the set of values that can be obtained by choosing values for the root extractions ( possible values for a th root). (For more details see , below.) Gauss proved that a primitive th root of unity can be expressed using only
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
s, addition, subtraction, multiplication and division if and only if it is possible to construct with compass and straightedge the regular -gon. This is the case
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is b ...
is either a
power of two A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In a context where only integers are considered, is restricted to non-negativ ...
or the product of a power of two and
Fermat prime In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form :F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: : 3, 5, 17, 257, 65537, 429496 ...
s that are all different. If is a primitive th root of unity, the same is true for , and r=z+\frac 1z is twice the real part of . In other words, is a
reciprocal polynomial In algebra, given a polynomial :p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, with coefficients from an arbitrary field, its reciprocal polynomial or reflected polynomial,* denoted by or , is the polynomial :p^*(x) = a_n + a_x + \cdots + a_0x^n ...
, the polynomial R_n that has as a root may be deduced from by the standard manipulation on reciprocal polynomials, and the primitive th roots of unity may be deduced from the roots of R_n by solving the
quadratic equation In algebra, a quadratic equation () is any equation that can be rearranged in standard form as ax^2 + bx + c = 0\,, where represents an unknown value, and , , and represent known numbers, where . (If and then the equation is linear, not q ...
z^2-rz+1=0. That is, the real part of the primitive root is \frac r2, and its imaginary part is \pm i\sqrt. The polynomial R_n is an irreducible polynomial whose roots are all real. Its degree is a power of two, if and only if is a product of a power of two by a product (possibly empty) of distinct Fermat primes, and the regular -gon is constructible with compass and straightedge. Otherwise, it is solvable in radicals, but one are in the
casus irreducibilis In algebra, ''casus irreducibilis'' (Latin for "the irreducible case") is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically (as opposed to numerically), i.e., by obtaining roots th ...
, that is, every expression of the roots in terms of radicals involves ''nonreal radicals''.


Explicit expressions in low degrees

* For , the cyclotomic polynomial is Therefore, the only primitive first root of unity is 1, which is a non-primitive th root of unity for every ''n'' > 1. * As , the only primitive second (square) root of unity is −1, which is also a non-primitive th root of unity for every even . With the preceding case, this completes the list of
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
roots of unity. * As , the primitive third ( cube) roots of unity, which are the roots of this
quadratic polynomial In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before 20th century, the distinction was unclear between a polynomial ...
, are \frac,\ \frac . * As , the two primitive fourth roots of unity are and . * As , the four primitive fifth roots of unity are the roots of this quartic polynomial, which may be explicitly solved in terms of radicals, giving the roots \frac4 \pm i \frac, where \varepsilon may take the two values 1 and −1 (the same value in the two occurrences). * As , there are two primitive sixth roots of unity, which are the negatives (and also the square roots) of the two primitive cube roots: \frac,\ \frac. * As 7 is not a Fermat prime, the seventh roots of unity are the first that require cube roots. There are 6 primitive seventh roots of unity, which are pairwise
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
. The sum of a root and its conjugate is twice its real part. These three sums are the three real roots of the cubic polynomial r^3+r^2-2r-1, and the primitive seventh roots of unity are \frac\pm i\sqrt, where runs over the roots of the above polynomial. As for every cubic polynomial, these roots may be expressed in terms of square and cube roots. However, as these three roots are all real, this is
casus irreducibilis In algebra, ''casus irreducibilis'' (Latin for "the irreducible case") is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically (as opposed to numerically), i.e., by obtaining roots th ...
, and any such expression involves non-real cube roots. * As , the four primitive eighth roots of unity are the square roots of the primitive fourth roots, . They are thus \pm\frac \pm i\frac. * See Heptadecagon for the real part of a 17th root of unity.


Periodicity

If is a primitive th root of unity, then the sequence of powers : is -periodic (because for all values of ), and the sequences of powers : for are all -periodic (because ). Furthermore, the set of these sequences is a
basis Basis may refer to: Finance and accounting * Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates * Basis trading, a trading strategy consisting ...
of the
linear space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
of all -periodic sequences. This means that ''any'' -periodic sequence of complex numbers : can be expressed as a linear combination of powers of a primitive th root of unity: : x_j = \sum_k X_k \cdot z^ = X_1 z^ + \cdots + X_n \cdot z^ for some complex numbers and every integer . This is a form of Fourier analysis. If is a (discrete) time variable, then is a
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
and is a complex
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
. Choosing for the primitive th root of unity :z = e^\frac = \cos\frac + i \sin\frac allows to be expressed as a linear combination of and : :x_j = \sum_k A_k \cos \frac + \sum_k B_k \sin \frac. This is a discrete Fourier transform.


Summation

Let be the sum of all the th roots of unity, primitive or not. Then :\operatorname(n) = \begin 1, & n=1\\ 0, & n>1. \end This is an immediate consequence of Vieta's formulas. In fact, the th roots of unity being the roots of the polynomial , their sum is the coefficient of degree , which is either 1 or 0 according whether or . Alternatively, for there is nothing to prove, and for there exists a root – since the set of all the th roots of unity is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
, , so the sum satisfies , whence . Let be the sum of all the primitive th roots of unity. Then :\operatorname(n) = \mu(n), where is the
Möbius function The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most of ...
. In the section Elementary properties, it was shown that if is the set of all th roots of unity and is the set of primitive ones, is a disjoint union of the : :\operatorname(n) = \bigcup_\operatorname(d), This implies :\operatorname(n) = \sum_\operatorname(d). Applying the
Möbius inversion formula In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius. A large gener ...
gives :\operatorname(n) = \sum_\mu(d)\operatorname\left(\frac\right). In this formula, if , then , and for : . Therefore, . This is the special case of Ramanujan's sum , defined as the sum of the th powers of the primitive th roots of unity: :c_n(s) = \sum_^n e^.


Orthogonality

From the summation formula follows an orthogonality relationship: for and :\sum_^ \overline \cdot z^ = n \cdot\delta_ where is the
Kronecker delta In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 & ...
and is any primitive th root of unity. The matrix whose th entry is :U_ = n^\cdot z^ defines a discrete Fourier transform. Computing the inverse transformation using Gaussian elimination requires operations. However, it follows from the orthogonality that is unitary. That is, :\sum_^ \overline \cdot U_ = \delta_, and thus the inverse of is simply the complex conjugate. (This fact was first noted by
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
when solving the problem of trigonometric interpolation). The straightforward application of or its inverse to a given vector requires operations. The fast Fourier transform algorithms reduces the number of operations further to .


Cyclotomic polynomials

The zeros of the polynomial :p(z) = z^n - 1 are precisely the th roots of unity, each with multiplicity 1. The th '' cyclotomic polynomial'' is defined by the fact that its zeros are precisely the ''primitive'' th roots of unity, each with multiplicity 1. : \Phi_n(z) = \prod_^(z-z_k) where are the primitive th roots of unity, and is Euler's totient function. The polynomial has integer coefficients and is an
irreducible polynomial In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted f ...
over the rational numbers (that is, it cannot be written as the product of two positive-degree polynomials with rational coefficients). The case of prime , which is easier than the general assertion, follows by applying
Eisenstein's criterion In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials with ...
to the polynomial :\frac, and expanding via the
binomial theorem In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the ...
. Every th root of unity is a primitive th root of unity for exactly one positive
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
of . This implies that :z^n - 1 = \prod_ \Phi_d(z). This formula represents the
factorization In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several ''factors'', usually smaller or simpler objects of the same kind ...
of the polynomial into irreducible factors: :\begin z^1 -1 &= z-1 \\ z^2 -1 &= (z-1)(z+1) \\ z^3 -1 &= (z-1) (z^2 + z + 1) \\ z^4 -1 &= (z-1)(z+1) (z^2+1) \\ z^5 -1 &= (z-1) (z^4 + z^3 +z^2 + z + 1) \\ z^6 -1 &= (z-1)(z+1) (z^2 + z + 1) (z^2 - z + 1)\\ z^7 -1 &= (z-1) (z^6+ z^5 + z^4 + z^3 + z^2 + z + 1) \\ z^8 -1 &= (z-1)(z+1) (z^2+1) (z^4+1) \\ \end Applying
Möbius inversion Moebius, Möbius or Mobius may refer to: People * August Ferdinand Möbius (1790–1868), German mathematician and astronomer * Theodor Möbius (1821–1890), German philologist * Karl Möbius (1825–1908), German zoologist and ecologist * Paul ...
to the formula gives :\Phi_n(z) = \prod_\left(z^\frac - 1\right)^ = \prod_\left(z^d - 1\right)^, where is the
Möbius function The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most of ...
. So the first few cyclotomic polynomials are : : : : : : : : If is a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
, then all the th roots of unity except 1 are primitive th roots, and we have : \Phi_p(z) = \frac = \sum_^ z^k. Substituting any positive integer ≥ 2 for , this sum becomes a base
repunit In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book ''Recreat ...
. Thus a necessary (but not sufficient) condition for a repunit to be prime is that its length be prime. Note that, contrary to first appearances, ''not'' all coefficients of all cyclotomic polynomials are 0, 1, or −1. The first exception is . It is not a surprise it takes this long to get an example, because the behavior of the coefficients depends not so much on as on how many odd prime factors appear in . More precisely, it can be shown that if has 1 or 2 odd prime factors (for example, ) then the th cyclotomic polynomial only has coefficients 0, 1 or −1. Thus the first conceivable for which there could be a coefficient besides 0, 1, or −1 is a product of the three smallest odd primes, and that is . This by itself doesn't prove the 105th polynomial has another coefficient, but does show it is the first one which even has a chance of working (and then a computation of the coefficients shows it does). A theorem of Schur says that there are cyclotomic polynomials with coefficients arbitrarily large in absolute value. In particular, if n = p_1 p_2 \cdots p_t, where p_1 < p_2 < \cdots < p_t are odd primes, p_1 +p_2>p_t, and ''t'' is odd, then occurs as a coefficient in the th cyclotomic polynomial. Many restrictions are known about the values that cyclotomic polynomials can assume at integer values. For example, if is prime, then if and only . Cyclotomic polynomials are solvable in radicals, as roots of unity are themselves radicals. Moreover, there exist more informative radical expressions for th roots of unity with the additional property that every value of the expression obtained by choosing values of the radicals (for example, signs of square roots) is a primitive th root of unity. This was already shown by
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
in 1797. Efficient
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s exist for calculating such expressions.


Cyclic groups

The th roots of unity form under multiplication a
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
of order , and in fact these groups comprise all of the
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
subgroups of the
multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
of the complex number field. A generator for this cyclic group is a primitive th root of unity. The th roots of unity form an irreducible representation of any cyclic group of order . The orthogonality relationship also follows from group-theoretic principles as described in Character group. The roots of unity appear as entries of the
eigenvector In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
s of any
circulant matrix In linear algebra, a circulant matrix is a square matrix in which all row vectors are composed of the same elements and each row vector is rotated one element to the right relative to the preceding row vector. It is a particular kind of Toeplit ...
; that is, matrices that are invariant under cyclic shifts, a fact that also follows from
group representation theory In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to re ...
as a variant of
Bloch's theorem In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential take the form of a plane wave modulated by a periodic function. The theorem is named after the physicist Felix Bloch, who d ...
. In particular, if a circulant
Hermitian matrix In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -t ...
is considered (for example, a discretized one-dimensional Laplacian with periodic boundaries), the orthogonality property immediately follows from the usual orthogonality of eigenvectors of Hermitian matrices.


Cyclotomic fields

By adjoining a primitive th root of unity to \Q, one obtains the th
cyclotomic field In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of ...
\Q(\exp(2\pi i/n)).This field contains all th roots of unity and is the
splitting field In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a poly ...
of the th cyclotomic polynomial over \Q. The field extension \Q(\exp(2\pi i /n))/\Q has degree φ(''n'') and its
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
is naturally isomorphic to the multiplicative group of units of the ring \Z/n\Z. As the Galois group of \Q(\exp(2\pi i /n))/\Q is abelian, this is an
abelian extension In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable ...
. Every subfield of a cyclotomic field is an abelian extension of the rationals. It follows that every ''n''th root of unity may be expressed in term of ''k''-roots, with various ''k'' not exceeding φ(''n''). In these cases
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
can be written out explicitly in terms of
Gaussian period In mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis (discrete Fourier tra ...
s: this theory from the ''
Disquisitiones Arithmeticae The (Latin for "Arithmetical Investigations") is a textbook of number theory written in Latin by Carl Friedrich Gauss in 1798 when Gauss was 21 and first published in 1801 when he was 24. It is notable for having had a revolutionary impact on th ...
'' of
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
was published many years before Galois.The ''Disquisitiones'' was published in 1801, Galois was born in 1811, died in 1832, but wasn't published until 1846. Conversely, ''every'' abelian extension of the rationals is such a subfield of a cyclotomic field – this is the content of a theorem of Kronecker, usually called the ''
Kronecker–Weber theorem In algebraic number theory, it can be shown that every cyclotomic field is an abelian extension of the rational number field Q, having Galois group of the form (\mathbb Z/n\mathbb Z)^\times. The Kronecker–Weber theorem provides a partial conve ...
'' on the grounds that Weber completed the proof.


Relation to quadratic integers

For , both roots of unity and are
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s. For three values of , the roots of unity are
quadratic integer In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form : with and (usual) integers. When algebra ...
s: * For they are Eisenstein integers (). * For they are
Gaussian integer In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /ma ...
s (): see
Imaginary unit The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
. For four other values of , the primitive roots of unity are not quadratic integers, but the sum of any root of unity with its
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
(also an th root of unity) is a quadratic integer. For , none of the non-real roots of unity (which satisfy a
quartic equation In mathematics, a quartic equation is one which can be expressed as a ''quartic function'' equaling zero. The general form of a quartic equation is :ax^4+bx^3+cx^2+dx+e=0 \, where ''a'' ≠ 0. The quartic is the highest order polynomi ...
) is a quadratic integer, but the sum of each root with its complex conjugate (also a 5th root of unity) is an element of the ring Z /a>(). For two pairs of non-real 5th roots of unity these sums are inverse
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( ...
and minus golden ratio. For , for any root of unity equals to either 0, ±2, or ± (). For , for any root of unity, equals to either 0, ±1, ±2 or ± ().


See also

* Argand system * Circle group, the unit complex numbers *
Cyclotomic field In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of ...
* Group scheme of roots of unity *
Dirichlet character In analytic number theory and related branches of mathematics, a complex-valued arithmetic function \chi:\mathbb\rightarrow\mathbb is a Dirichlet character of modulus m (where m is a positive integer) if for all integers a and b: :1)   \ch ...
* Ramanujan's sum *
Witt vector In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors W(\mathbb_p) over the finite field of ord ...
* Teichmüller character


Notes


References

* * * * * * * {{DEFAULTSORT:Root of Unity Algebraic numbers Cyclotomic fields Polynomials 1 (number) Complex numbers