Rubidium Molybdenum Purple Bronze
   HOME

TheInfoList



OR:

Rubidium is the chemical element with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Rb and atomic number 37. It is a very soft, whitish-grey solid in the
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
group, similar to potassium and
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
. Rubidium is the first
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope 85Rb, and 28% is slightly radioactive 87Rb, with a half-life of 48.8 billion years—more than three times as long as the estimated age of the universe. German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy. The name comes from the Latin word , meaning deep red, the color of its emission spectrum. Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms. Rubidium is not a known nutrient for any living organisms. However, rubidium ions have similar properties and the same charge as potassium ions, and are actively taken up and treated by animal cells in similar ways.


Characteristics

Rubidium is a very soft, ductile, silvery-white metal. It is the second most electropositive of the stable alkali metals and melts at a temperature of . Like other alkali metals, rubidium metal reacts violently with water. As with potassium (which is slightly less reactive) and caesium (which is slightly more reactive), this reaction is usually vigorous enough to ignite the hydrogen gas it produces. Rubidium has also been reported to ignite spontaneously in air. It forms
amalgams Amalgam most commonly refers to: * Amalgam (chemistry), mercury alloy * Amalgam (dentistry), material of silver tooth fillings ** Bonded amalgam, used in dentistry Amalgam may also refer to: * Amalgam Comics, a publisher * Amalgam Digital, an in ...
with
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
and alloys with gold, iron,
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
, sodium, and potassium, but not lithium (even though rubidium and lithium are in the same group). Rubidium has a very low
ionization energy Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
of only 406 kJ/mol. Rubidium and potassium show a very similar purple color in the flame test, and distinguishing the two elements requires more sophisticated analysis, such as spectroscopy.


Compounds

Rubidium chloride (RbCl) is probably the most used rubidium compound: among several other chlorides, it is used to induce living cells to take up DNA; it is also used as a biomarker, because in nature, it is found only in small quantities in living organisms and when present, replaces potassium. Other common rubidium compounds are the corrosive rubidium hydroxide (RbOH), the starting material for most rubidium-based chemical processes;
rubidium carbonate Rubidium carbonate, Rb2CO3, is a convenient compound of rubidium; it is stable, not particularly reactive, and readily soluble in water, and is the form in which rubidium is usually sold. Preparation This salt can be prepared by adding ammonium c ...
(Rb2CO3), used in some optical glasses, and rubidium copper sulfate, Rb2SO4·CuSO4·6H2O. Rubidium silver iodide (RbAg4I5) has the highest
room temperature Colloquially, "room temperature" is a range of air temperatures that most people prefer for indoor settings. It feels comfortable to a person when they are wearing typical indoor clothing. Human comfort can extend beyond this range depending on ...
conductivity of any known ionic crystal, a property exploited in thin film
batteries Battery most often refers to: * Electric battery, a device that provides electrical power * Battery (crime), a crime involving unlawful physical contact Battery may also refer to: Energy source *Automotive battery, a device to provide power t ...
and other applications. Rubidium forms a number of
oxides An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
when exposed to air, including rubidium monoxide (Rb2O), Rb6O, and Rb9O2; rubidium in excess oxygen gives the superoxide RbO2. Rubidium forms salts with halogens, producing rubidium fluoride, rubidium chloride,
rubidium bromide Rubidium bromide is the bromide of rubidium. It has a NaCl crystal structure, with a lattice constant of 685 picometres. There are several methods for synthesising rubidium bromide. One involves reacting rubidium hydroxide with hydrobromic acid ...
, and
rubidium iodide Rubidium iodide is a salt with a melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equ ...
.


Isotopes

Although rubidium is monoisotopic, rubidium in the Earth's crust is composed of two isotopes: the stable 85Rb (72.2%) and the radioactive 87Rb (27.8%). Natural rubidium is radioactive, with specific activity of about 670 Bq/g, enough to significantly expose a
photographic film Photographic film is a strip or sheet of transparent film base coated on one side with a gelatin photographic emulsion, emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of th ...
in 110 days. Thirty additional rubidium isotopes have been synthesized with half-lives of less than 3 months; most are highly radioactive and have few uses. Rubidium-87 has a half-life of  years, which is more than three times the age of the universe of  years, making it a
primordial nuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
. It readily substitutes for potassium in minerals, and is therefore fairly widespread. Rb has been used extensively in dating rocks; 87Rb beta decays to stable 87Sr. During
fractional crystallization Fractional crystallization may refer to: * Fractional crystallization (chemistry), a process to separate different solutes from a solution * Fractional crystallization (geology) Fractional crystallization, or crystal fractionation, is one of the ...
, Sr tends to concentrate in plagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual magma may increase over time, and the progressing differentiation results in rocks with elevated Rb/Sr ratios. The highest ratios (10 or more) occur in
pegmatite A pegmatite is an igneous rock showing a very coarse texture, with large interlocking crystals usually greater in size than and sometimes greater than . Most pegmatites are composed of quartz, feldspar, and mica, having a similar silicic com ...
s. If the initial amount of Sr is known or can be extrapolated, then the age can be determined by measurement of the Rb and Sr concentrations and of the 87Sr/86Sr ratio. The dates indicate the true age of the minerals only if the rocks have not been subsequently altered (see rubidium–strontium dating). Rubidium-82, one of the element's non-natural isotopes, is produced by
electron-capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
decay of strontium-82 with a half-life of 25.36 days. With a half-life of 76 seconds, rubidium-82 decays by positron emission to stable
krypton-82 There are 34 known isotopes of krypton (36Kr) with atomic mass numbers from 69 through 102. Naturally occurring krypton is made of five stable isotopes and one () which is slightly radioactive with an extremely long half-life, plus traces of radio ...
.


Occurrence

Rubidium is the twenty-third most abundant element in the Earth's crust, roughly as abundant as zinc and rather more common than copper. It occurs naturally in the minerals leucite, pollucite, carnallite, and zinnwaldite, which contain as much as 1% rubidium
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
. Lepidolite contains between 0.3% and 3.5% rubidium, and is the commercial source of the element. Some potassium minerals and
potassium chloride Potassium chloride (KCl, or potassium salt) is a metal halide salt composed of potassium and chlorine. It is odorless and has a white or colorless vitreous crystal appearance. The solid dissolves readily in water, and its solutions have a salt ...
s also contain the element in commercially significant quantities. Seawater contains an average of 125 µg/L of rubidium compared to the much higher value for potassium of 408 mg/L and the much lower value of 0.3 µg/L for caesium. Rubidium is the 18th most abundant element in seawater. Because of its large ionic radius, rubidium is one of the " incompatible elements." During
magma crystallization Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natur ...
, rubidium is concentrated together with its heavier analogue caesium in the liquid phase and crystallizes last. Therefore, the largest deposits of rubidium and caesium are zone
pegmatite A pegmatite is an igneous rock showing a very coarse texture, with large interlocking crystals usually greater in size than and sometimes greater than . Most pegmatites are composed of quartz, feldspar, and mica, having a similar silicic com ...
ore bodies formed by this enrichment process. Because rubidium substitutes for potassium in the crystallization of magma, the enrichment is far less effective than that of caesium. Zone pegmatite ore bodies containing mineable quantities of caesium as pollucite or the lithium minerals lepidolite are also a source for rubidium as a by-product. Two notable sources of rubidium are the rich deposits of pollucite at Bernic Lake, Manitoba, Canada, and the rubicline found as impurities in pollucite on the Italian island of Elba, with a rubidium content of 17.5%. Both of those deposits are also sources of caesium.


Production

Although rubidium is more abundant in Earth's crust than caesium, the limited applications and the lack of a mineral rich in rubidium limits the production of rubidium compounds to 2 to 4 tonnes per year. Several methods are available for separating potassium, rubidium, and caesium. The
fractional crystallization Fractional crystallization may refer to: * Fractional crystallization (chemistry), a process to separate different solutes from a solution * Fractional crystallization (geology) Fractional crystallization, or crystal fractionation, is one of the ...
of a rubidium and caesium alum yields after 30 subsequent steps pure rubidium alum. Two other methods are reported, the chlorostannate process and the ferrocyanide process. For several years in the 1950s and 1960s, a by-product of potassium production called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium, with the rest being potassium and a small amount of caesium. Today the largest producers of caesium produce rubidium as a by-product from pollucite.


History

Rubidium was discovered in 1861 by Robert Bunsen and Gustav Kirchhoff, in Heidelberg, Germany, in the mineral lepidolite through flame spectroscopy. Because of the bright red lines in its
emission spectrum The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an electron making a atomic electron transition, transition from a high energy state to a lower energy st ...
, they chose a name derived from the Latin word , meaning "deep red". Rubidium is a minor component in lepidolite. Kirchhoff and Bunsen processed 150 kg of a lepidolite containing only 0.24% rubidium monoxide (Rb2O). Both potassium and rubidium form insoluble salts with chloroplatinic acid, but those salts show a slight difference in solubility in hot water. Therefore, the less soluble rubidium hexachloroplatinate (Rb2PtCl6) could be obtained by
fractional crystallization Fractional crystallization may refer to: * Fractional crystallization (chemistry), a process to separate different solutes from a solution * Fractional crystallization (geology) Fractional crystallization, or crystal fractionation, is one of the ...
. After reduction of the hexachloroplatinate with hydrogen, the process yielded 0.51 grams of rubidium chloride (RbCl) for further studies. Bunsen and Kirchhoff began their first large-scale isolation of caesium and rubidium compounds with of mineral water, which yielded 7.3 grams of
caesium chloride Caesium chloride or cesium chloride is the inorganic compound with the formula Cs Cl. This colorless salt is an important source of caesium ions in a variety of niche applications. Its crystal structure forms a major structural type where each ...
and 9.2 grams of rubidium chloride. Rubidium was the second element, shortly after caesium, to be discovered by spectroscopy, just one year after the invention of the spectroscope by Bunsen and Kirchhoff. The two scientists used the rubidium chloride to estimate that the atomic weight of the new element was 85.36 (the currently accepted value is 85.47). They tried to generate elemental rubidium by electrolysis of molten rubidium chloride, but instead of a metal, they obtained a blue homogeneous substance, which "neither under the naked eye nor under the microscope showed the slightest trace of metallic substance". They presumed that it was a subchloride (); however, the product was probably a
colloid A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
al mixture of the metal and rubidium chloride. In a second attempt to produce metallic rubidium, Bunsen was able to reduce rubidium by heating charred rubidium tartrate. Although the distilled rubidium was pyrophoric, they were able to determine the density and the melting point. The quality of this research in the 1860s can be appraised by the fact that their determined density differs by less than 0.1 g/cm3 and the melting point by less than 1 °C from the presently accepted values. The slight radioactivity of rubidium was discovered in 1908, but that was before the theory of isotopes was established in 1910, and the low level of activity (half-life greater than 1010 years) made interpretation complicated. The now proven decay of 87Rb to stable 87Sr through beta decay was still under discussion in the late 1940s. Rubidium had minimal industrial value before the 1920s. Since then, the most important use of rubidium is research and development, primarily in chemical and electronic applications. In 1995, rubidium-87 was used to produce a Bose–Einstein condensate, for which the discoverers, Eric Allin Cornell,
Carl Edwin Wieman Carl Edwin Wieman (born March 26, 1951) is an American physicist and educationist at Stanford University, and currently the A.D White Professor at Large at Cornell University. In 1995, while at the University of Colorado Boulder, he and Eric All ...
and Wolfgang Ketterle, won the 2001 Nobel Prize in Physics.


Applications

Rubidium compounds are sometimes used in fireworks to give them a purple color. Rubidium has also been considered for use in a thermoelectric generator using the magnetohydrodynamic principle, whereby hot rubidium ions are passed through a
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. These conduct electricity and act like an armature of a generator, thereby generating an
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
. Rubidium, particularly vaporized 87Rb, is one of the most commonly used atomic species employed for laser cooling and Bose–Einstein condensation. Its desirable features for this application include the ready availability of inexpensive diode laser light at the relevant wavelength and the moderate temperatures required to obtain substantial vapor pressures. For cold-atom applications requiring tunable interactions, 85Rb is preferred for its rich Feshbach spectrum. Rubidium has been used for polarizing 3He, producing volumes of magnetized 3He gas, with the nuclear spins aligned rather than random. Rubidium vapor is optically pumped by a laser, and the polarized Rb polarizes 3He through the hyperfine interaction. Such spin-polarized 3He cells are useful for neutron polarization measurements and for producing polarized neutron beams for other purposes. The resonant element in atomic clocks utilizes the
hyperfine structure In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucl ...
of rubidium's energy levels, and rubidium is useful for high-precision timing. It is used as the main component of secondary frequency references (rubidium oscillators) in cell site transmitters and other electronic transmitting, networking, and test equipment. These rubidium standards are often used with
GPS The Global Positioning System (GPS), originally Navstar GPS, is a Radionavigation-satellite service, satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of t ...
to produce a "primary frequency standard" that has greater accuracy and is less expensive than caesium standards. Such rubidium standards are often mass-produced for the telecommunication industry. Other potential or current uses of rubidium include a working fluid in vapor turbines, as a getter in vacuum tubes, and as a photocell component. Rubidium is also used as an ingredient in special types of glass, in the production of superoxide by burning in oxygen, in the study of potassium
ion channel Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of io ...
s in biology, and as the vapor in atomic
magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, o ...
s. In particular, 87Rb is used with other alkali metals in the development of spin-exchange relaxation-free (SERF) magnetometers. Rubidium-82 is used for
positron emission tomography Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in Metabolism, metabolic processes, and in other physiological activities including bl ...
. Rubidium is very similar to potassium, and tissue with high potassium content will also accumulate the radioactive rubidium. One of the main uses is myocardial perfusion imaging. As a result of changes in the
blood–brain barrier The blood–brain barrier (BBB) is a highly selective semipermeable membrane, semipermeable border of endothelium, endothelial cells that prevents solutes in the circulating blood from ''non-selectively'' crossing into the extracellular fluid of ...
in brain tumors, rubidium collects more in brain tumors than normal brain tissue, allowing the use of radioisotope rubidium-82 in nuclear medicine to locate and image brain tumors. Rubidium-82 has a very short half-life of 76 seconds, and the production from decay of strontium-82 must be done close to the patient. Rubidium was tested for the influence on manic depression and depression. Dialysis patients suffering from depression show a depletion in rubidium, and therefore a supplementation may help during depression. In some tests the rubidium was administered as rubidium chloride with up to 720 mg per day for 60 days.


Precautions and biological effects

Rubidium reacts violently with water and can cause fires. To ensure safety and purity, this metal is usually kept under dry mineral oil or sealed in glass ampoules in an inert atmosphere. Rubidium forms peroxides on exposure even to a small amount of air diffused into the oil, and storage is subject to similar precautions as the storage of metallic potassium. Rubidium, like sodium and potassium, almost always has +1 oxidation state when dissolved in water, even in biological contexts. The human body tends to treat Rb+ ions as if they were potassium ions, and therefore concentrates rubidium in the body's intracellular fluid (i.e., inside cells). The ions are not particularly toxic; a 70 kg person contains on average 0.36 g of rubidium, and an increase in this value by 50 to 100 times did not show negative effects in test persons. The biological half-life of rubidium in humans measures 31–46 days. Although a partial substitution of potassium by rubidium is possible, when more than 50% of the potassium in the muscle tissue of rats was replaced with rubidium, the rats died.


References


Further reading

* Meites, Louis (1963). ''Handbook of Analytical Chemistry'' (New York: McGraw-Hill Book Company, 1963) *


External links

*
Rubidium
at '' The Periodic Table of Videos'' (University of Nottingham) {{Authority control Chemical elements Alkali metals Reducing agents Chemical elements with body-centered cubic structure