Reversible Cellular Automaton
   HOME

TheInfoList



OR:

A reversible cellular automaton is a
cellular automaton A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessel ...
in which every configuration has a unique predecessor. That is, it is a regular grid of cells, each containing a state drawn from a finite set of states, with a rule for updating all cells simultaneously based on the states of their neighbors, such that the previous state of any cell before an update can be determined uniquely from the updated states of all the cells. The time-reversed dynamics of a reversible cellular automaton can always be described by another cellular automaton rule, possibly on a much larger neighborhood. Several methods are known for defining cellular automata rules that are reversible; these include the
block cellular automaton A block cellular automaton or partitioning cellular automaton is a special kind of cellular automaton in which the lattice of cells is divided into non-overlapping blocks (with different partitions at different time steps) and the transition rule ...
method, in which each update partitions the cells into blocks and applies an
invertible function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X\t ...
separately to each block, and the
second-order cellular automaton A second-order cellular automaton is a type of reversible cellular automaton (CA) invented by Edward Fredkin. Reprinted in . where the state of a cell at time depends not only on its neighborhood at time , but also on its state at time .. Gen ...
method, in which the update rule combines states from two previous steps of the automaton. When an automaton is not defined by one of these methods, but is instead given as a rule table, the problem of testing whether it is reversible is solvable for block cellular automata and for one-dimensional cellular automata, but is undecidable for other types of cellular automata. Reversible cellular automata form a natural model of
reversible computing Reversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary c ...
, a technology that could lead to ultra-low-power computing devices.
Quantum cellular automata A quantum cellular automaton (QCA) is an abstract model of quantum computation, devised in analogy to conventional models of cellular automata introduced by John von Neumann. The same name may also refer to quantum dot cellular automata, which are ...
, one way of performing computations using the principles of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, are often required to be reversible. Additionally, many problems in physical modeling, such as the motion of particles in an
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
or the
Ising model The Ising model () (or Lenz-Ising model or Ising-Lenz model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent ...
of alignment of magnetic charges, are naturally reversible and can be simulated by reversible cellular automata. Properties related to reversibility may also be used to study cellular automata that are not reversible on their entire configuration space, but that have a subset of the configuration space as an
attractor In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain ...
that all initially random configurations converge towards. As
Stephen Wolfram Stephen Wolfram (; born 29 August 1959) is a British-American computer scientist, physicist, and businessman. He is known for his work in computer science, mathematics, and theoretical physics. In 2012, he was named a fellow of the American Ma ...
writes, "once on an attractor, any system—even if it does not have reversible underlying rules—must in some sense show approximate reversibility."


Examples


One-dimensional automata

A cellular automaton is defined by its ''cells'' (often a one- or two-dimensional array), a finite set of ''values'' or states that can go into each cell, a ''neighborhood'' associating each cell with a finite set of nearby cells, and an ''update rule'' according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells. The simplest possible cellular automata have a one-dimensional array of cells, each of which can hold a binary value (either 0 or 1), with each cell having a neighborhood consisting only of it and its two nearest cells on either side; these are called the elementary cellular automata. If the update rule for such an automaton causes each cell to always remain in the same state, then the automaton is reversible: the previous state of all cells can be recovered from their current states, because for each cell the previous and current states are the same. Similarly, if the update rule causes every cell to change its state from 0 to 1 and vice versa, or if it causes a cell to copy the state from a fixed neighboring cell, or if it causes it to copy a state and then reverse its value, it is necessarily reversible. call these types of reversible cellular automata, in which the state of each cell depends only on the previous state of one neighboring cell, "trivial". Despite its simplicity, the update rule that causes each cell to copy the state of a neighboring cell is important in the theory of
symbolic dynamics In mathematics, symbolic dynamics is the practice of modeling a topological or smooth dynamical system by a discrete space consisting of infinite sequences of abstract symbols, each of which corresponds to a state of the system, with the dynamics (e ...
, where it is known as the
shift map In mathematics, and in particular functional analysis, the shift operator also known as translation operator is an operator that takes a function to its translation . In time series analysis, the shift operator is called the lag operator. Shift ...
. A little less trivially, suppose that the cells again form a one-dimensional array, but that each state is an
ordered pair In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In con ...
(''l'',''r'') consisting of a left part ''l'' and a right part ''r'', each drawn from a finite set of possible values. Define a transition function that sets the left part of a cell to be the left part of its left neighbor and the right part of a cell to be the right part of its right neighbor. That is, if the left neighbor's state is and the right neighbor's state is , the new state of a cell is the result of combining these states using a pairwise operation defined by the equation . An example of this construction is given in the illustration, in which the left part is represented graphically as a shape and the right part is represented as a color; in this example, each cell is updated with the shape of its left neighbor and the color of its right neighbor. Then this automaton is reversible: the values on the left side of each pair migrate rightwards and the values on the right side migrate leftwards, so the prior state of each cell can be recovered by looking for these values in neighboring cells. The operation used to combine pairs of states in this automaton forms an algebraic structure known as a rectangular band. Multiplication of
decimal number The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
s by two or by five can be performed by a one-dimensional reversible cellular automaton with ten states per cell (the ten decimal digits). Each digit of the product depends only on a neighborhood of two digits in the given number: the digit in the same position and the digit one position to the right. More generally, multiplication or division of doubly infinite digit sequences in any
radix In a positional numeral system, the radix or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal/denary system (the most common system in use today) the radix (base number) is t ...
, by a multiplier or divisor all of whose prime factors are also prime factors of , is an operation that forms a cellular automaton because it depends only on a bounded number of nearby digits, and is reversible because of the existence of
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a rat ...
s. Multiplication by other values (for instance, multiplication of decimal numbers by three) remains reversible, but does not define a cellular automaton, because there is no fixed bound on the number of digits in the initial value that are needed to determine a single digit in the result. There are no nontrivial reversible elementary cellular automata. However, a near-miss is provided by
Rule 90 In the mathematics, mathematical study of cellular automaton, cellular automata, Rule 90 is an elementary cellular automaton based on the exclusive or function. It consists of a one-dimensional array of cells, each of which can hold either a 0 or ...
and other elementary cellular automata based on the
exclusive or Exclusive or or exclusive disjunction is a logical operation that is true if and only if its arguments differ (one is true, the other is false). It is symbolized by the prefix operator J and by the infix operators XOR ( or ), EOR, EXOR, , ...
function. In Rule 90, the state of each cell is the exclusive or of the previous states of its two neighbors. This use of the exclusive or makes the transition rule locally invertible, in the sense that any contiguous subsequence of states can be generated by this rule. Rule 90 is not a reversible cellular automaton rule, because in Rule 90 every assignment of states to the complete array of cells has exactly four possible predecessors, whereas reversible rules are required to have exactly one predecessor per configuration..


Critters

Conway's Game of Life The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further ...
, one of the most famous cellular automaton rules, is not reversible: for instance, it has many patterns that die out completely, so the configuration in which all cells are dead has many predecessors, and it also has
Garden of Eden In Abrahamic religions, the Garden of Eden ( he, גַּן־עֵדֶן, ) or Garden of God (, and גַן־אֱלֹהִים ''gan-Elohim''), also called the Terrestrial Paradise, is the Bible, biblical paradise described in Book of Genesis, Genes ...
patterns with no predecessors. However, another rule called "Critters" by its inventors,
Tommaso Toffoli Tommaso Toffoli () is an Italian-American professor of electrical and computer engineering at Boston University where he joined the faculty in 1995. He has worked on cellular automata and the theory of artificial life (with Edward Fredkin and oth ...
and
Norman Margolus Norman H. Margolus (born 1955) is a Canadian-American physicist and computer scientist, known for his work on cellular automata and reversible computing.. He is a research affiliate with the Computer Science and Artificial Intelligence Laborator ...
, is reversible and has similar dynamic behavior to Life. The Critters rule is a
block cellular automaton A block cellular automaton or partitioning cellular automaton is a special kind of cellular automaton in which the lattice of cells is divided into non-overlapping blocks (with different partitions at different time steps) and the transition rule ...
in which, at each step, the cells of the automaton are partitioned into 2×2 blocks and each block is updated independently of the other blocks. Its transition function flips the state of every cell in a block that does not have exactly two live cells, and in addition rotates by 180° blocks with exactly three live cells. Because this function is invertible, the automaton defined by these rules is a reversible cellular automaton. When started with a smaller field of random cells centered within a larger region of dead cells, many small patterns similar to Life's
glider Glider may refer to: Aircraft and transport Aircraft * Glider (aircraft), heavier-than-air aircraft primarily intended for unpowered flight ** Glider (sailplane), a rigid-winged glider aircraft with an undercarriage, used in the sport of glidin ...
escape from the central random area and interact with each other. The Critters rule can also support more complex spaceships of varying speeds as well as
oscillators Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
with infinitely many different periods., section 12.8.2, "Critters", pp. 132–134; ; .


Constructions

Several general methods are known for constructing cellular automaton rules that are automatically reversible.


Block cellular automata

A
block cellular automaton A block cellular automaton or partitioning cellular automaton is a special kind of cellular automaton in which the lattice of cells is divided into non-overlapping blocks (with different partitions at different time steps) and the transition rule ...
is an automaton at which, in each time step, the cells of the automaton are partitioned into congruent subsets (called blocks), and the same transformation is applied independently to each block. Typically, such an automaton will use more than one partition into blocks, and will rotate between these partitions at different time steps of the system., Section 14.5, "Partitioning technique", pp. 150–153; , Section 4.2.1, "Partitioning Cellular Automata", pp. 115–116. In a frequently used form of this design, called the Margolus neighborhood, the cells of the automaton form a square grid and are partitioned into larger 2 × 2 square blocks at each step. The center of a block at one time step becomes the corner of four blocks at the next time step, and vice versa; in this way, the four cells in each 2 × 2 belong to four different 2 × 2 squares of the previous partition. The Critters rule discussed above is an example of this type of automaton. Designing reversible rules for block cellular automata, and determining whether a given rule is reversible, is easy: for a block cellular automaton to be reversible it is necessary and sufficient that the transformation applied to the individual blocks at each step of the automaton is itself reversible. When a block cellular automaton is reversible, the time-reversed version of its dynamics can also be described as a block cellular automaton with the same block structure, using a time-reversed sequence of partitions of cells into blocks, and with the transition function for each block being the
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X\t ...
of the original rule.


Simulation of irreversible automata

showed how to embed any irreversible -dimensional cellular automaton rule into a reversible -dimensional rule. Each -dimensional slice of the new reversible rule simulates a single time step of the original rule. In this way, Toffoli showed that many features of irreversible cellular automata, such as the ability to simulate arbitrary
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
s, could also be extended to reversible cellular automata. As Toffoli conjectured and proved, the increase in dimension incurred by Toffoli's method is a necessary payment for its generality: under mild assumptions (such as the translation-invariance of the embedding), any embedding of a cellular automaton that has a
Garden of Eden In Abrahamic religions, the Garden of Eden ( he, גַּן־עֵדֶן, ) or Garden of God (, and גַן־אֱלֹהִים ''gan-Elohim''), also called the Terrestrial Paradise, is the Bible, biblical paradise described in Book of Genesis, Genes ...
into a reversible cellular automaton must increase the dimension. describes another type of simulation that does not obey Hertling's assumptions and does not change the dimension. Morita's method can simulate the finite configurations of any irreversible automaton in which there is a "quiescent" or "dead" state, such that if a cell and all its neighbors are quiescent then the cell remains quiescent in the next step. The simulation uses a reversible block cellular automaton of the same dimension as the original irreversible automaton. The information that would be destroyed by the irreversible steps of the simulated automaton is instead sent away from the configuration into the infinite quiescent region of the simulating automaton. This simulation does not update all cells of the simulated automaton simultaneously; rather, the time to simulate a single step is proportional to the size of the configuration being simulated. Nevertheless, the simulation accurately preserves the behavior of the simulated automaton, as if all of its cells were being updated simultaneously. Using this method it is possible to show that even one-dimensional reversible cellular automata are capable of universal computation.


Second-order cellular automata

The
second-order cellular automaton A second-order cellular automaton is a type of reversible cellular automaton (CA) invented by Edward Fredkin. Reprinted in . where the state of a cell at time depends not only on its neighborhood at time , but also on its state at time .. Gen ...
technique is a method of transforming any cellular automaton into a reversible cellular automaton, invented by
Edward Fredkin Edward Fredkin (born October 2, 1934) is a distinguished career professor at Carnegie Mellon University (CMU), and an early pioneer of digital physics. Fredkin's primary contributions include work on reversible computing and cellular automata. ...
and first published by several other authors in 1984. In this technique, the state of each cell in the automaton at time is a function both of its neighborhood at time and of its own state at time . Specifically, the transition function of the automaton maps each neighborhood at time to a
permutation In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or proc ...
on the set of states, and then applies that permutation to the state at time . The reverse dynamics of the automaton may be computed by mapping each neighborhood to the inverse permutation and proceeding in the same way., Section 14.2, "Second-order technique", pp. 147–149.
pp. 437ff
.
In the case of automata with binary-valued states (zero or one), there are only two possible permutations on the states (the identity permutation and the permutation that swaps the two states), which may themselves be represented as the
exclusive or Exclusive or or exclusive disjunction is a logical operation that is true if and only if its arguments differ (one is true, the other is false). It is symbolized by the prefix operator J and by the infix operators XOR ( or ), EOR, EXOR, , ...
of a state with a binary value. In this way, any conventional two-valued cellular automaton may be converted to a second-order cellular automaton rule by using the conventional automaton's transition function on the states at time , and then computing the exclusive or of these states with the states at time to determine the states at time . However, the behavior of the reversible cellular automaton determined in this way may not bear any resemblance to the behavior of the cellular automaton from which it was defined. Any second-order automaton may be transformed into a conventional cellular automaton, in which the transition function depends only on the single previous time step, by combining pairs of states from consecutive time steps of the second-order automaton into single states of a conventional cellular automaton.


Conserved landscape

A one-dimensional cellular automaton found by uses a neighborhood consisting of four contiguous cells. In this automaton, a cell flips its state whenever it occupies the "?" position in the pattern "0?10". No two such patterns can overlap, so the same "landscape" surrounding the flipped cell continues to be present after the transition. In the next step, the cell in the same "?" position will flip again, back to its original state. Therefore, this automaton is its own inverse, and is reversible. Patt performed a
brute force search In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique and algorithmic paradigm that consists of systematically enumerating all possible candidates for the soluti ...
of all two-state one-dimensional cellular automata with small neighborhoods; this search led to the discovery of this automaton, and showed that it was the simplest possible nontrivial one-dimensional two-state reversible cellular automaton. There are no nontrivial reversible two-state automata with three-cell neighborhoods, and all two-state reversible automata with four-cell neighborhoods are simple variants on Patt's automaton. Patt's automaton can be viewed in retrospect as an instance of the "conserved landscape" technique for designing reversible cellular automata. In this technique, a change to the state of a cell is triggered by a pattern among a set of neighbors that do not themselves change states. In this way, the existence of the same pattern can be used to trigger the inverse change in the time-reversed dynamics of the automaton. Patt's automaton has very simple dynamics (all cyclic sequences of configurations have length two), but automata using the same conserved landscape technique with more than one triggering pattern are capable of more complex behavior. In particular they can simulate any second-order cellular automaton., section 5.3, "Conserved-landscape permutations", pp. 237–238. The SALT model of is a special case of the conserved landscape technique. In this model, the cells of an integer grid are split into even and odd subsets. In each time step certain pairs of cells of one parity are swapped, based on the configuration of nearby cells of the other parity. Rules using this model can simulate the
billiard ball computer A billiard-ball computer, a type of conservative logic circuit, is an idealized model of a reversible mechanical computer based on Newtonian dynamics, proposed in 1982 by Edward Fredkin and Tommaso Toffoli. Instead of using electronic signals li ...
, or support long strings of live cells that can move at many different speeds or vibrate at many different frequencies.


Theory

A cellular automaton consists of an array of cells, each one of which has a finite number of possible states, together with a rule for updating all cells simultaneously based only on the states of neighboring cells. A ''configuration'' of a cellular automaton is an assignment of a state to every cell of the automaton; the update rule of a cellular automaton forms a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
from configurations to configurations, with the requirement that the updated value of any cell depends only on some finite neighborhood of the cell, and that the function is invariant under translations of the input array. With these definitions, a cellular automaton is reversible when it satisfies any one of the following conditions, all of which are mathematically equivalent to each other: # Every configuration of the automaton has a unique predecessor that is mapped to it by the update rule. # The update rule of the automaton is a
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
; that is, a function that is both one-to-one and
onto In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
. # The update rule is an
injective function In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
, that is, there are no two configurations that both map to the same common configuration. This condition is obviously implied by the assumption that the update rule is a bijection. In the other direction, the Garden of Eden theorem for cellular automata implies that every injective update rule is bijective. # The time-reversed dynamics of the automaton can be described by another cellular automaton. Clearly, for this to be possible, the update rule must be bijective. In the other direction, if the update rule is bijective, then it has an inverse function that is also bijective. This inverse function must be a cellular automaton rule. The proof of this fact uses the
Curtis–Hedlund–Lyndon theorem The Curtis–Hedlund–Lyndon theorem is a mathematical characterization of cellular automata in terms of their symbolic dynamics. It is named after Morton L. Curtis, Gustav A. Hedlund, and Roger Lyndon; in his 1969 paper stating the theorem, Hedl ...
, a topological characterization of cellular automata rules as the translation-invariant functions that are
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
with respect to the Cantor topology on the space of configurations. # The update rule of the automaton is an
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
of the shift dynamical system defined by the state space and the translations of the lattice of cells. That is, it is a
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphi ...
that commutes with the shift map, as the Curtis–Hedlund–Lyndon theorem implies. analyze several alternative definitions of reversibility for cellular automata. Most of these turn out to be equivalent either to injectivity or to surjectivity of the transition function of the automaton; however, there is one more alternative that does not match either of these two definitions. It applies to automata such as the Game of Life that have a quiescent or dead state. In such an automaton, one can define a configuration to be "finite" if it has only finitely many non-quiescent cells, and one can consider the class of automata for which every finite configuration has at least one finite predecessor. This class turns out to be distinct from both the surjective and injective automata, and in some subsequent research, automata with this property have been called ''invertible finite automata''.


Testing reversibility

It was first shown by that the problem of testing reversibility of a given one-dimensional cellular automaton has an algorithmic solution. Alternative algorithms based on
automata theory Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science. The word ''automata'' comes from the Greek word αὐτόματο ...
and
de Bruijn graph In graph theory, an -dimensional De Bruijn graph of symbols is a directed graph representing overlaps between sequences of symbols. It has vertices, consisting of all possible sequences of the given symbols; the same symbol may appear multiple ...
s were given by and , respectively. *Culik begins with the observation that a cellular automaton has an injective transition function if and only if the transition function is injective on the subsets of configurations that are periodic (repeating the same substring infinitely often in both directions). He defines a nondeterministic
finite-state transducer A finite-state transducer (FST) is a finite-state machine with two memory ''tapes'', following the terminology for Turing machines: an input tape and an output tape. This contrasts with an ordinary finite-state automaton, which has a single tape. ...
that performs the transition rule of the automaton on periodic strings. This transducer works by remembering the neighborhood of the automaton at the start of the string and entering an accepting state when that neighborhood concatenated to the end of the input would cause its nondeterministically chosen transitions to be correct. Culik then swaps the input and output of the transducer. The transducer resulting from this swap simulates the inverse dynamics of the given automaton. Finally, Culik applies previously known algorithms to test whether the resulting swapped transducer maps each input to a single output. *Sutner defines a
directed graph In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pa ...
(a type of
de Bruijn graph In graph theory, an -dimensional De Bruijn graph of symbols is a directed graph representing overlaps between sequences of symbols. It has vertices, consisting of all possible sequences of the given symbols; the same symbol may appear multiple ...
) in which each vertex represents a pair of assignments of states for the cells in a contiguous sequence of cells. The length of this sequence is chosen to be one less than the neighborhood size of the automaton. An edge in Sutner's graph represents a pair of sequences of cells that overlap in all but one cell, so that the union of the sequences is a full neighborhood in the cellular automaton. Each such edge is directed from the overlapping subsequence on the left to the subsequence on the right. Edges are only included in the graph when they represent compatible state assignments on the overlapping parts of their cell sequences, and when the automaton rule (applied to the neighborhood determined by the potential edge) would give the same results for both assignments of states. By performing a linear-time strong connectivity analysis of this graph, it is possible to determine which of its vertices belong to cycles. The transition rule is non-injective if and only if this graph contains a
directed cycle Director may refer to: Literature * ''Director'' (magazine), a British magazine * ''The Director'' (novel), a 1971 novel by Henry Denker * ''The Director'' (play), a 2000 play by Nancy Hasty Music * Director (band), an Irish rock band * ''Di ...
in which at least one vertex has two differing state assignments. These methods take
polynomial time In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by ...
, proportional to the square of the size of the state transition table of the input automaton. A related algorithm of determines whether a given rule is surjective when applied to finite-length arrays of cells with periodic boundary conditions, and if so, for which lengths. For a block cellular automaton, testing reversibility is also easy: the automaton is reversible if and only if the transition function on the blocks of the automaton is invertible, and in this case the reverse automaton has the same block structure with the inverse transition function. However, for cellular automata with other neighborhoods in two or more dimensions, the problem of testing reversibility is undecidable, meaning that there cannot exist an algorithm that always halts and always correctly answers the problem. The proof of this fact by is based on the previously known undecidability of tiling the plane by
Wang tile Wang tiles (or Wang dominoes), first proposed by mathematician, logician, and philosopher Hao Wang in 1961, are a class of formal systems. They are modelled visually by square tiles with a color on each side. A set of such tiles is selected, an ...
s, sets of square tiles with markings on their edges that constrain which pairs of tiles can fit edge-to-edge. Kari defines a cellular automaton from a set of Wang tiles, such that the automaton fails to be injective if and only if the given tile set can tile the entire plane. His construction uses the
von Neumann neighborhood In cellular automata, the von Neumann neighborhood (or 4-neighborhood) is classically defined on a two-dimensional square lattice and is composed of a central cell and its four adjacent cells. The neighborhood is named after John von Neumann, ...
, and cells with large numbers of states. In the same paper, Kari also showed that it is undecidable to test whether a given cellular automaton rule of two or more dimensions is surjective (that is, whether it has a
Garden of Eden In Abrahamic religions, the Garden of Eden ( he, גַּן־עֵדֶן, ) or Garden of God (, and גַן־אֱלֹהִים ''gan-Elohim''), also called the Terrestrial Paradise, is the Bible, biblical paradise described in Book of Genesis, Genes ...
).


Reverse neighborhood size

In a one-dimensional reversible cellular automaton with states per cell, in which the neighborhood of a cell is an interval of cells, the automaton representing the reverse dynamics has neighborhoods that consist of at most cells. This bound is known to be tight for : there exist -state reversible cellular automata with two-cell neighborhoods whose time-reversed dynamics forms a cellular automaton with neighborhood size exactly . For any integer there are only finitely many two-dimensional reversible -state cellular automata with the von Neumann neighborhood. Therefore, there is a well-defined function such that all reverses of -state cellular automata with the von Neumann neighborhood use a neighborhood with radius at most : simply let be the maximum, among all of the finitely many reversible -state cellular automata, of the neighborhood size needed to represent the time-reversed dynamics of the automaton. However, because of Kari's undecidability result, there is no algorithm for computing and the values of this function must grow very quickly, more quickly than any
computable function Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do ...
..


Wolfram's classification

A well-known classification of cellular automata by
Stephen Wolfram Stephen Wolfram (; born 29 August 1959) is a British-American computer scientist, physicist, and businessman. He is known for his work in computer science, mathematics, and theoretical physics. In 2012, he was named a fellow of the American Ma ...
studies their behavior on random initial conditions. For a reversible cellular automaton, if the initial configuration is chosen uniformly at random among all possible configurations, then that same uniform randomness continues to hold for all subsequent states. Thus it would appear that most reversible cellular automata are of Wolfram's Class 3: automata in which almost all initial configurations evolve pseudo-randomly or chaotically. However, it is still possible to distinguish among different reversible cellular automata by analyzing the effect of local perturbations on the behavior of the automaton. Making a change to the initial state of a reversible cellular automaton may cause changes to later states to remain only within a bounded region, to propagate irregularly but unboundedly, or to spread quickly, and lists one-dimensional reversible cellular automaton rules exhibiting all three of these types of behavior. Later work by Wolfram identifies the one-dimensional Rule 37R automaton as being particularly interesting in this respect. When run on a finite array of cells with periodic boundary conditions, starting from a small seed of random cells centered within a larger empty neighborhood, it tends to fluctuate between ordered and chaotic states. However, with the same initial conditions on an unbounded set of cells its configurations tend to organize themselves into several types of simple moving particles.


Abstract algebra

Another way to formalize reversible cellular automata involves
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''a ...
, and this formalization has been useful in developing computerized searches for reversible cellular automaton rules. defines a ''semicentral bigroupoid'' to be an algebraic structure consisting of a set of elements and two operations and on pairs of elements, satisfying the two equational axioms: *for all elements , , and in , , and *for all elements , , and in , . For instance, this is true for the two operations in which operation returns its right argument and operation returns its left argument. As Boykett argues, any one-dimensional reversible cellular automaton is equivalent to an automaton in ''rectangular form'', in which the cells are offset a half unit at each time step, and in which both the forward and reverse evolution of the automaton have neighborhoods with just two cells, the cells a half unit away in each direction. If a reversible automaton has neighborhoods larger than two cells, it can be simulated by a reversible automaton with smaller neighborhoods and more states per cell, in which each cell of the simulating automaton simulates a contiguous block of cells in the simulated automaton. The two axioms of a semicentral bigroupoid are exactly the conditions required on the forward and reverse transition functions of these two-cell neighborhoods to be the reverses of each other. That is, every semicentral bigroupoid defines a reversible cellular automaton in rectangular form, in which the transition function of the automaton uses the  operation to combine the two cells of its neighborhood, and in which the  operation similarly defines the reverse dynamics of the automaton. Every one-dimensional reversible cellular automaton is equivalent to one in this form. Boykett used this algebraic formulation as the basis for algorithms that exhaustively list all possible inequivalent reversible cellular automata.


Conservation laws

When researchers design reversible cellular automata to simulate physical systems, they typically incorporate into the design the
conservation law In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, c ...
s of the system; for instance, a cellular automaton that simulates an ideal gas should conserve the number of gas particles and their total
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
, for otherwise it would not provide an accurate simulation. However, there has also been some research on the conservation laws that reversible cellular automata can have, independent of any intentional design. The typical type of conserved quantity measured in these studies takes the form of a sum, over all contiguous subsets of cells of the automaton, of some numerical function of the states of the cells in each subset. Such a quantity is conserved if, whenever it takes a finite value, that value automatically remains constant through each time step of the automaton, and in this case it is called a th-order invariant of the automaton. For instance, recall the one-dimensional cellular automaton defined as an example from a rectangular band, in which the cell states are pairs of values (''l'',''r'') drawn from sets and of left values and right values, the left value of each cell moves rightwards at each time step, and the right value of each cell moves leftwards. In this case, for each left or right value of the band, one can define a conserved quantity, the total number of cells that have that value. If there are left values and right values, then there are independent first-order-invariants, and any first-order invariant can be represented as a linear combination of these fundamental ones. The conserved quantities associated with left values flow uniformly to the right at a constant rate: that is, if the number of left values equal to within some region of the line takes a certain value at time , then it will take the same value for the shifted region at time . Similarly, the conserved quantities associated with right values flow uniformly to the left. Any one-dimensional reversible cellular automaton may be placed into rectangular form, after which its transition rule may be factored into the action of an
idempotent Idempotence (, ) is the property of certain operation (mathematics), operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence ...
semicentral bigroupoid (a reversible rule for which regions of cells with a single state value change only at their boundaries) together with a
permutation In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or proc ...
on the set of states. The first-order invariants for the ''idempotent lifting'' of the automaton rule (the modified rule formed by omitting the permutation) necessarily behave like the ones for a rectangular band: they have a basis of invariants that flow either leftwards or rightwards at a constant rate without interaction. The first-order invariants for the overall automaton are then exactly the invariants for the idempotent lifting that give equal weight to every pair of states that belong to the same
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a p ...
of the permutation. However, the permutation of states in the rule may cause these invariants to behave differently from in the idempotent lifting, flowing non-uniformly and with interactions. In physical systems,
Noether's theorem Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in ...
provides an equivalence between conservation laws and symmetries of the system. However, for cellular automata this theorem does not directly apply, because instead of being governed by the
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
of the system the behavior of the automaton is encoded into its rules, and the automaton is guaranteed to obey certain symmetries (translation invariance in both space and time) regardless of any conservation laws it might obey. Nevertheless, the conserved quantities of certain reversible systems behave similarly to energy in some respects. For instance, if different regions of the automaton have different average values of some conserved quantity, the automaton's rules may cause this quantity to dissipate, so that the distribution of the quantity is more uniform in later states. Using these conserved quantities as a stand-in for the energy of the system can allow it to be analyzed using methods from classical physics.


Applications


Lattice gas automata

A lattice gas automaton is a cellular automaton designed to simulate the motion of particles in a fluid or an
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
. In such a system, gas particles move on straight lines with constant velocity, until undergoing
elastic collision In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into o ...
with other particles. Lattice gas automata simplify these models by only allowing a constant number of velocities (typically, only one speed and either four or six directions of motion) and by simplifying the types of collision that are possible., Chapter 16, "Fluid dynamics", pp. 172–184. Specifically, the HPP lattice gas model consists of particles moving at unit velocity in the four axis-parallel directions. When two particles meet on the same line in opposite directions, they collide and are sent outwards from the collision point on the perpendicular line. This system obeys the conservation laws of physical gases, and produces simulations whose appearance resembles the behavior of physical gases. However, it was found to obey unrealistic additional conservation laws. For instance, the total momentum within any single line is conserved. As well, the differences between axis-parallel and non-axis-parallel directions in this model (its
anisotropy Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
) is undesirably high. The FHP lattice gas model improves the HPP model by having particles moving in six different directions, at 60 degree angles to each other, instead of only four directions. In any head-on collision, the two outgoing particles are deflected at 60 degree angles from the two incoming particles. Three-way collisions are also possible in the FHP model and are handled in a way that both preserves total momentum and avoids the unphysical added conservation laws of the HPP model. Because the motion of the particles in these systems is reversible, they are typically implemented with reversible cellular automata. In particular, both the HPP and FHP lattice gas automata can be implemented with a two-state block cellular automaton using the Margolus neighborhood.


Ising model

The
Ising model The Ising model () (or Lenz-Ising model or Ising-Lenz model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent ...
is used to model the behavior of magnetic systems. It consists of an array of cells, the state of each of which represents a ''spin'', either ''up'' or ''down''. The energy of the system is measured by a function that depends on the number of neighboring pairs of cells that have the same spin as each other. Therefore, if a cell has equal numbers of neighbors in the two states, it may flip its own state without changing the total energy. However, such a flip is energy-conserving only if no two adjacent cells flip at the same time., Chapter 17.2, "Ising systems", pp. 186–190. Cellular automaton models of this system divide the square lattice into two alternating subsets, and perform updates on one of the two subsets at a time. In each update, every cell that can flip does so. This defines a reversible cellular automaton which can be used to investigate the Ising model.


Billiard ball computation and low-power computing

proposed the
billiard-ball computer A billiard-ball computer, a type of conservative logic circuit, is an idealized model of a reversible mechanical computer based on Newtonian dynamics, proposed in 1982 by Edward Fredkin and Tommaso Toffoli. Instead of using electronic signals ...
as part of their investigations into
reversible computing Reversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary c ...
. A billiard-ball computer consists of a system of synchronized particles (the billiard balls) moving in tracks and guided by a fixed set of obstacles. When the particles collide with each other or with the obstacles, they undergo an
elastic collision In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into o ...
much as real
billiard balls A billiard ball is a small, hard ball used in cue sports, such as carom billiards, pool, and snooker. The number, type, diameter, color, and pattern of the balls differ depending upon the specific game being played. Various particular ball pr ...
would do. The input to the computer is encoded using the presence or absence of particles on certain input tracks, and its output is similarly encoded using the presence or absence of particles on output tracks. The tracks themselves may be envisioned as wires, and the particles as being Boolean signals transported on those wires. When a particle hits an obstacle, it reflects from it. This reflection may be interpreted as a change in direction of the wire the particle is following. Two particles on different tracks may collide, forming a logic gate at their collision point.. As showed, billiard-ball computers may be simulated using a two-state reversible block cellular automaton with the Margolus neighborhood. In this automaton's update rule, blocks with exactly one live cell rotate by 180°, blocks with two diagonally opposite live cells rotate by 90°, and all other blocks remain unchanged. These rules cause isolated live cells to behave like billiard balls, moving on diagonal trajectories. Connected groups of more than one live cell behave instead like the fixed obstacles of the billiard-ball computer. In an appendix, Margolus also showed that a three-state second-order cellular automaton using the two-dimensional
Moore neighborhood In cellular automata, the Moore neighborhood is defined on a two-dimensional square lattice and is composed of a central cell and the eight cells that surround it. Name The neighborhood is named after Edward F. Moore, a pioneer of cellular au ...
could simulate billiard-ball computers. One reason to study reversible universal models of computation such as the billiard-ball model is that they could theoretically lead to actual computer systems that consume very low quantities of energy. According to
Landauer's principle Landauer's principle is a physical principle pertaining to the lower theoretical limit of energy consumption of computation. It holds that "any logically irreversible manipulation of information, such as the erasure of a bit or the merging of two ...
, irreversible computational steps require a certain minimal amount of energy per step, but reversible steps can be performed with an amount of energy per step that is arbitrarily close to zero. However, in order to perform computation using less energy than Landauer's bound, it is not good enough for a cellular automaton to have a transition function that is globally reversible: what is required is that the local computation of the transition function also be done in a reversible way. For instance, reversible block cellular automata are always locally reversible: the behavior of each individual block involves the application of an invertible function with finitely many inputs and outputs. were the first to ask whether every reversible cellular automaton has a locally reversible update rule. showed that for one- and two-dimensional automata the answer is positive, and showed that any reversible cellular automaton could be simulated by a (possibly different) locally reversible cellular automaton. However, the question of whether every reversible transition function is locally reversible remains open for dimensions higher than two.


Synchronization

The "Tron" rule of Toffoli and Margolus is a reversible block cellular rule with the Margolus neighborhood. When a 2 × 2 block of cells all have the same state, all cells of the block change state; in all other cases, the cells of the block remain unchanged. As Toffoli and Margolus argue, the evolution of patterns generated by this rule can be used as a clock to synchronize any other rule on the Margolus neighborhood. A cellular automaton synchronized in this way obeys the same dynamics as the standard Margolus-neighborhood rule while running on an
asynchronous cellular automaton Cellular automata, as with other multi-agent system models, usually treat time as discrete and state updates as occurring synchronously. The state of every cell in the model is updated together, before any of the new states influence other cells. ...
., Section 12.8.3, "Asynchronous computation", pp. 134–136.


Encryption

proposed using multidimensional reversible cellular automata as an
encryption In cryptography, encryption is the process of encoding information. This process converts the original representation of the information, known as plaintext, into an alternative form known as ciphertext. Ideally, only authorized parties can decip ...
system. In Kari's proposal, the cellular automaton rule would be the encryption key. Encryption would be performed by running the rule forward one step, and decryption would be performed by running it backward one step. Kari suggests that a system such as this may be used as a
public-key cryptosystem Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic alg ...
. In principle, an attacker could not algorithmically determine the decryption key (the reverse rule) from a given encryption key (forward rule) because of the undecidability of testing reversibility, so the forward rule could be made public without compromising the security of the system. However, Kari did not specify which types of reversible cellular automaton should be used for such a system, or show how a cryptosystem using this approach would be able to generate encryption/decryption key pairs. have proposed an alternative encryption system. In their system, the encryption key determines the local rule for each cell of a one-dimensional cellular automaton. A second-order automaton based on that rule is run for several rounds on an input to transform it into an encrypted output. The reversibility property of the automaton ensures that any encrypted message can be decrypted by running the same system in reverse. In this system, keys must be kept secret, because the same key is used both for encryption and decryption.


Quantum computing

Quantum cellular automata A quantum cellular automaton (QCA) is an abstract model of quantum computation, devised in analogy to conventional models of cellular automata introduced by John von Neumann. The same name may also refer to quantum dot cellular automata, which are ...
are arrays of automata whose states and state transitions obey the laws of
quantum dynamics In physics, quantum dynamics is the quantum version of classical dynamics. Quantum dynamics deals with the motions, and energy and momentum exchanges of systems whose behavior is governed by the laws of quantum mechanics. Quantum dynamics is relevan ...
. Quantum cellular automata were suggested as a model of computation by and first formalized by . Several competing notions of these automata remain under research, many of which require that the automata constructed in this way be reversible.


Physical universality

asked whether it was possible for a cellular automaton to be ''physically universal'', meaning that, for any bounded region of the automaton's cells, it should be possible to surround that region with cells whose states form an appropriate support scaffolding that causes the automaton to implement any arbitrary transformation on sets of states within the region. Such an automaton must be reversible, or at least locally injective, because automata without this property have Garden of Eden patterns, and it is not possible to implement a transformation that creates a Garden of Eden. constructed a reversible cellular automaton that is physically universal in this sense. Schaeffer's automaton is a block cellular automaton with two states and the Margolis neighborhood, closely related to the automata for the billiard ball model and for the HPP lattice gas. However, the billiard ball model is not physically universal, as it can be used to construct impenetrable walls preventing the state within some region from being read and transformed. In Schaeffer's model, every pattern eventually decomposes into particles moving diagonally in four directions. Thus, his automaton is not
Turing complete Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical com ...
. However, Schaeffer showed that it is possible to surround any finite configuration by scaffolding that decays more slowly than it. After the configuration decomposes into particles, the scaffolding intercepts those particles, and uses them as the input to a system of Boolean circuits constructed within the scaffolding. These circuits can be used to compute arbitrary functions of the initial configuration. The scaffolding then translates the output of the circuits back into a system of moving particles, which converge on the initial region and collide with each other to build a copy of the transformed state. In this way, Schaeffer's system can be used to apply any function to any bounded region of the state space, showing that this automaton rule is physically universal.See also
A Physically Universal Cellular Automaton
, Shtetl-Optimized,
Scott Aaronson Scott Joel Aaronson (born May 21, 1981) is an American theoretical computer scientist and David J. Bruton Jr. Centennial Professor of Computer Science at the University of Texas at Austin. His primary areas of research are quantum computing an ...
, June 26, 2014.


Notes


References

*. *. *. *. *. *. *. *. *. *. *. *. *. *. *. Reprinted in . *. *. *. *. *. *. *. *. *. *. *. *. Reprinted in , and in . *. *. *. *. *. *. *. *. *. Reprinted in . *. *. As cited by and . *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. * {{refend Cellular automata Reversible computing