Reverse transcription polymerase chain reaction (RT-PCR) is a laboratory technique combining
reverse transcription of
RNA
Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
into
DNA (in this context called
complementary DNA
In genetics, complementary DNA (cDNA) is DNA synthesized from a single-stranded RNA (e.g., messenger RNA (mRNA) or microRNA (miRNA)) template in a reaction catalyzed by the enzyme reverse transcriptase. cDNA is often used to express a spe ...
or cDNA) and amplification of specific DNA targets using
polymerase chain reaction
The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) t ...
(PCR).
It is primarily used to measure the amount of a specific RNA. This is achieved by monitoring the amplification reaction using fluorescence, a technique called
real-time PCR
A real-time polymerase chain reaction (real-time PCR, or qPCR) is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR (i.e., in real ...
or quantitative PCR (qPCR). Combined RT-PCR and qPCR are routinely used for analysis of
gene expression
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
and quantification of viral RNA in research and clinical settings.
The close association between RT-PCR and qPCR has led to
metonymic
Metonymy () is a figure of speech in which a concept is referred to by the name of something closely associated with that thing or concept.
Etymology
The words ''metonymy'' and ''metonym'' come from grc, μετωνυμία, 'a change of name ...
use of the term qPCR to mean RT-PCR. Such use may be confusing,
as RT-PCR can be used without qPCR, for example to enable
molecular cloning
Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word ''cloning'' refers to the fact that the metho ...
,
sequencing
In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succ ...
or simple detection of RNA. Conversely, qPCR may be used without RT-PCR, for example to quantify the
copy number
Copy number variation (CNV) is a phenomenon in which sections of the genome are repeated and the number of repeats in the genome varies between individuals. Copy number variation is a type of structural variation: specifically, it is a type of d ...
of a specific piece of DNA.
Nomenclature
The combined RT-PCR and qPCR technique has been described as quantitative RT-PCR
or real-time RT-PCR
(sometimes even called quantitative real-time RT-PCR
), has been variously abbreviated as qRT-PCR,
RT-qPCR,
RRT-PCR,
[
] and rRT-PCR. In order to avoid confusion, the following abbreviations will be used consistently throughout this article:
Not all authors, especially earlier ones, use this convention and the reader should be cautious when following links. RT-PCR has been used to indicate both real-time PCR (qPCR) and reverse transcription PCR (RT-PCR).
History
Since its introduction in 1977,
Northern blot
The northern blot, or RNA blot,Gilbert, S. F. (2000) Developmental Biology, 6th Ed. Sunderland MA, Sinauer Associates. is a technique used in molecular biology research to study gene expression by detection of RNA (or isolated mRNA) in a sample.K ...
has been used extensively for RNA quantification despite its shortcomings: (a) time-consuming technique, (b) requires a large quantity of RNA for detection, and (c) quantitatively inaccurate in the low abundance of RNA content.
However, since
PCR was invented by
Kary Mullis
Kary Banks Mullis (December 28, 1944August 7, 2019) was an American biochemist. In recognition of his role in the invention of the polymerase chain reaction (PCR) technique, he shared the 1993 Nobel Prize in Chemistry with Michael Smith and wa ...
in 1983, RT PCR has since displaced Northern blot as the method of choice for RNA detection and quantification.
RT-PCR has risen to become the benchmark technology for the detection and/or comparison of RNA levels for several reasons: (a) it does not require post PCR processing, (b) a wide range (>10
7-fold) of RNA abundance can be measured, and (c) it provides insight into both qualitative and quantitative data.
Due to its simplicity, specificity and sensitivity, RT-PCR is used in a wide range of
applications
Application may refer to:
Mathematics and computing
* Application software, computer software designed to help the user to perform specific tasks
** Application layer, an abstraction layer that specifies protocols and interface methods used in a c ...
from experiments as simple as quantification of
yeast cells in wine to more complex uses as diagnostic tools for detecting infectious agents such as the
avian flu
Avian influenza, known informally as avian flu or bird flu, is a variety of influenza caused by viruses adapted to birds. virus
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea.
Since Dmitri Ivanovsky's 1 ...
and
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the ongoing COVID-19 pandemic. The virus previously had a ...
.
Principles
In RT-PCR, the
RNA
Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
template is first converted into a
complementary DNA
In genetics, complementary DNA (cDNA) is DNA synthesized from a single-stranded RNA (e.g., messenger RNA (mRNA) or microRNA (miRNA)) template in a reaction catalyzed by the enzyme reverse transcriptase. cDNA is often used to express a spe ...
(cDNA) using a
reverse transcriptase
A reverse transcriptase (RT) is an enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, ...
(RT). The cDNA is then used as a template for exponential amplification using PCR. The use of RT-PCR for the detection of RNA transcript has revolutionized the study of gene expression in the following important ways:
* Made it theoretically possible to detect the transcripts of practically any gene
* Enabled sample amplification and eliminated the need for abundant starting material required when using northern blot analysis
* Provided tolerance for RNA degradation as long as the RNA spanning the primer is intact
One-step RT-PCR vs two-step RT-PCR
The quantification of
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
using RT-PCR can be achieved as either a one-step or a two-step reaction. The difference between the two approaches lies in the number of tubes used when performing the procedure. The two-step reaction requires that the reverse transcriptase reaction and PCR amplification be performed in separate tubes. The disadvantage of the two-step approach is susceptibility to contamination due to more frequent sample handling.
On the other hand, the entire reaction from cDNA synthesis to PCR amplification occurs in a single tube in the one-step approach. The one-step approach is thought to minimize experimental variation by containing all of the enzymatic reactions in a single environment. It eliminates the steps of pipetting cDNA product, which is labor-intensive and prone to contamination, to PCR reaction. The further use of inhibitor-tolerant polymerases, polymerase enhancers with an optimized one-step RT-PCR condition, supports the reverse transcription of the RNA from unpurified or crude samples, such as
whole blood
Whole blood (WB) is human blood from a standard blood donation. It is used in the treatment of massive bleeding, in exchange transfusion, and when people donate blood to themselves. One unit of whole blood (~517 mls) brings up hemoglobin lev ...
and
serum. However, the starting RNA templates are prone to degradation in the one-step approach, and the use of this approach is not recommended when repeated assays from the same sample is required. Additionally, the one-step approach is reported to be less accurate compared to the two-step approach. It is also the preferred method of analysis when using DNA binding dyes such as
SYBR Green
SYBR Green I (SG) is an asymmetrical cyanine dye used as a nucleic acid stain in molecular biology. The SYBR family of dyes is produced by Molecular Probes Inc., now owned by Thermo Fisher Scientific. SYBR Green I binds to DNA. The resulting ...
since the elimination of
primer-dimer A primer dimer (PD) is a potential by-product in the polymerase chain reaction (PCR), a common biotechnological method. As its name implies, a PD consists of two primer molecules that have attached ( hybridized) to each other because of strings of ...
s can be achieved through a simple change in the
melting temperature. Nevertheless, the one-step approach is a relatively convenient solution for the rapid detection of target RNA directly in biosensing.
End-point RT-PCR vs real-time RT-PCR
Quantification of RT-PCR products can largely be divided into two categories: end-point and real-time.
The use of end-point RT-PCR is preferred for measuring gene expression changes in small number of samples, but the real-time RT-PCR has become the gold standard method for validating quantitative results obtained from array analyses or gene expression changes on a global scale.
End-point RT-PCR
The measurement approaches of end-point RT-PCR requires the detection of gene expression levels by the use of fluorescent dyes like
ethidium bromide
Ethidium bromide (or homidium bromide, chloride salt homidium chloride) is an intercalating agent commonly used as a fluorescent tag ( nucleic acid stain) in molecular biology laboratories for techniques such as agarose gel electrophoresis. It ...
,
P32 labeling of PCR products using
phosphorimager Photostimulated luminescence (PSL) is the release of stored energy within a phosphor by stimulation with visible light, to produce a luminescent signal. X-rays may induce such an energy storage. A plate based on this mechanism is called a photostimu ...
,
or by
scintillation counting Liquid scintillation counting is the measurement of radioactive activity of a sample material which uses the technique of mixing the active material with a liquid scintillator (e.g. zinc sulfide), and counting the resultant photon emissions. The pu ...
.
End-point RT-PCR is commonly achieved using three different methods: relative, competitive and comparative.
; Relative RT-PCR: Relative quantifications of RT-PCR involves the co-amplification of an internal control simultaneously with the gene of interest. The internal control is used to normalize the samples. Once normalized, a direct comparison of relative transcript abundances across multiple samples of mRNA can be made. One precaution to note is that the internal control must be chosen so that it is not affected by the experimental treatment. The expression level should be constant across all samples and with the mRNA of interest for the results to be accurate and meaningful. Because the quantification of the results are analyzed by comparing the linear range of the target and control amplification, it is crucial to take into consideration the starting target molecules concentration and their amplification rate prior to starting the analysis. The results of the analysis are expressed as the ratios of gene signal to internal control signal, which the values can then be used for the comparison between the samples in the estimation of relative target RNA expression.
; Competitive RT-PCR: Competitive RT-PCR technique is used for absolute quantification. It involves the use of a synthetic “competitor” RNA that can be distinguished from the target RNA by a small difference in size or sequence. It is important for the design of the synthetic RNA be identical in sequence but slightly shorter than the target RNA for accurate results. Once designed and synthesized, a known amount of the competitor RNA is added to experimental samples and is co-amplified with the target using RT-PCR. Then, a concentration curve of the competitor RNA is produced and it is used to compare the RT-PCR signals produced from the endogenous transcripts to determine the amount of target present in the sample.
; Comparative RT-PCR: Comparative RT-PCR is similar to the competitive RT-PCR in that the target RNA competes for amplification reagents within a single reaction with an internal standard of unrelated sequence. Once the reaction is complete, the results are compared to an external standard curve to determine the target RNA concentration. In comparison to the relative and competitive quantification methods, comparative RT-PCR is considered to be the more convenient method to use since it does not require the investigator to perform a pilot experiment; in relative RT-PCR, the exponential amplification range of the mRNA must be predetermined and in competitive RT-PCR, a synthetic competitor RNA must be synthesized.
Real-time RT-PCR
The emergence of novel fluorescent DNA labeling techniques in the past few years has enabled the analysis and detection of PCR products in real-time and has consequently led to the widespread adoption of real-time RT-PCR for the analysis of gene expression. Not only is real-time RT-PCR now the method of choice for quantification of gene expression, it is also the preferred method of obtaining results from
array analyses and gene expressions on a global scale. Currently, there are four different fluorescent DNA
probes available for the real-time RT-PCR detection of PCR products:
SYBR Green
SYBR Green I (SG) is an asymmetrical cyanine dye used as a nucleic acid stain in molecular biology. The SYBR family of dyes is produced by Molecular Probes Inc., now owned by Thermo Fisher Scientific. SYBR Green I binds to DNA. The resulting ...
,
TaqMan TaqMan probes are hydrolysis probes that are designed to increase the specificity of quantitative PCR. The method was first reported in 1991 by researcher Kary Mullis at Cetus Corporation, and the technology was subsequently developed by Hoffmann ...
,
molecular beacon
Molecular beacons, or molecular beacon probes, are oligonucleotide hybridization probes that can report the presence of specific nucleic acids in homogenous solutions. Molecular beacons are hairpin-shaped molecules with an internally quenched fluo ...
s, and
scorpion probes. All of these probes allow the detection of PCR products by generating a fluorescent signal. While the SYBR Green dye emits its fluorescent signal simply by binding to the double-stranded DNA in solution, the TaqMan probes', molecular beacons' and scorpions' generation of fluorescence depend on
Förster Resonance Energy Transfer (FRET) coupling of the dye molecule and a quencher moiety to the oligonucleotide substrates.
;
SYBR Green
SYBR Green I (SG) is an asymmetrical cyanine dye used as a nucleic acid stain in molecular biology. The SYBR family of dyes is produced by Molecular Probes Inc., now owned by Thermo Fisher Scientific. SYBR Green I binds to DNA. The resulting ...
: When the SYBR Green binds to the double-stranded DNA of the PCR products, it will emit light upon excitation. The intensity of the fluorescence increases as the PCR products accumulate. This technique is easy to use since designing of probes is not necessary given lack of specificity of its binding. However, since the dye does not discriminate the double-stranded DNA from the PCR products and those from the primer-dimers, overestimation of the target concentration is a common problem. Where accurate quantification is an absolute necessity, further assay for the validation of results must be performed. Nevertheless, among the real-time RT-PCR product detection methods, SYBR Green is the most economical and easiest to use.
;
TaqMan TaqMan probes are hydrolysis probes that are designed to increase the specificity of quantitative PCR. The method was first reported in 1991 by researcher Kary Mullis at Cetus Corporation, and the technology was subsequently developed by Hoffmann ...
probes: TaqMan probes are oligonucleotides that have a fluorescent probe attached to the 5' end and a quencher to the 3' end. During PCR amplification, these probes will hybridize to the target sequences located in the
amplicon
In molecular biology, an amplicon is a piece of DNA or RNA that is the source and/or product of amplification (molecular biology), amplification or DNA replication, replication events. It can be formed artificially, using various methods including ...
and as polymerase replicates the template with TaqMan bound, it also cleaves the fluorescent probe due to polymerase 5'- nuclease activity. Because the close proximity between the quench molecule and the fluorescent probe normally prevents fluorescence from being detected through FRET, the decoupling results in the increase of intensity of fluorescence proportional to the number of the probe cleavage cycles. Although well-designed TaqMan probes produce accurate real-time RT-PCR results, it is expensive and time-consuming to synthesize when separate probes must be made for each mRNA target analyzed.
Additionally, these probes are light sensitive and must be carefully frozen as aliquots to prevent degradation.
;
Molecular beacon probes: Similar to the TaqMan probes, molecular beacons also make use of FRET detection with fluorescent probes attached to the 5' end and a quencher attached to the 3' end of an oligonucleotide substrate. However, whereas the TaqMan fluorescent probes are cleaved during amplification, molecular beacon probes remain intact and rebind to a new target during each reaction cycle. When free in solution, the close proximity of the fluorescent probe and the quencher molecule prevents fluorescence through FRET. However, when molecular beacon probes hybridize to a target, the fluorescent dye and the quencher are separated resulting in the emittance of light upon excitation. As is with the TaqMan probes, molecular beacons are expensive to synthesize and require separate probes for each RNA target.
; Scorpion probes: The scorpion probes, like molecular beacons, will not be fluorescent active in an unhybridized state, again, due to the fluorescent probe on the 5' end being quenched by the moiety on the 3' end of an oligonucleotide. With Scorpions, however, the 3' end also contains sequence that is complementary to the extension product of the primer on the 5' end. When the Scorpion extension binds to its complement on the amplicon, the Scorpion structure opens, prevents FRET, and enables the fluorescent signal to be measured.
; Multiplex probes: TaqMan probes, molecular beacons, and scorpions allow the concurrent measurement of PCR products in a single tube. This is possible because each of the different fluorescent dyes can be associated with a specific emission spectra. Not only does the use of multiplex probes save time and effort without compromising test utility, its application in wide areas of research such as gene deletion analysis, mutation and polymorphism analysis, quantitative analysis, and RNA detection, make it an invaluable technique for laboratories of many discipline.
Two strategies are commonly employed to quantify the results obtained by real-time RT-PCR; the standard curve method and the comparative threshold method.
Application
The exponential amplification via reverse transcription polymerase chain reaction provides for a highly sensitive technique in which a very low copy number of RNA molecules can be detected. RT-PCR is widely used in the diagnosis of genetic diseases and, semiquantitatively, in the determination of the abundance of specific different RNA molecules within a cell or tissue as a measure of
gene expression
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
.
Research methods
RT-PCR is commonly used in research methods to measure gene expression. For example, Lin et al. used qRT-PCR to measure expression of Gal genes in yeast cells. First, Lin et al. engineered a mutation of a protein suspected to participate in the regulation of Gal genes. This mutation was hypothesized to selectively abolish Gal expression. To confirm this, gene expression levels of yeast cells containing this mutation were analyzed using qRT-PCR. The researchers were able to conclusively determine that the mutation of this regulatory protein reduced Gal expression.
Northern blot
The northern blot, or RNA blot,Gilbert, S. F. (2000) Developmental Biology, 6th Ed. Sunderland MA, Sinauer Associates. is a technique used in molecular biology research to study gene expression by detection of RNA (or isolated mRNA) in a sample.K ...
analysis is used to study the RNA's gene expression further.
Gene insertion
RT-PCR can also be very useful in the insertion of
eukaryotic
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
genes into
prokaryotes
A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
. Because most eukaryotic genes contain
introns
An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene. ...
, which are present in the genome but not in the mature mRNA, the cDNA generated from a RT-PCR reaction is the exact (without regard to the error-prone nature of reverse transcriptases) DNA sequence that would be directly translated into
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
after
transcription
Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including:
Genetics
* Transcription (biology), the copying of DNA into RNA, the fir ...
. When these genes are expressed in prokaryotic cells for the sake of protein production or purification, the RNA produced directly from transcription need not undergo splicing as the transcript contains only
exons
An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequence ...
. (Prokaryotes, such as E. coli, lack the mRNA splicing mechanism of eukaryotes).
Genetic disease diagnosis
RT-PCR can be used to diagnose
genetic disease
A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorders ...
such as
Lesch–Nyhan syndrome
Lesch–Nyhan syndrome (LNS) is a rare inherited disorder caused by a deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). This deficiency occurs due to mutations in the ''HPRT1'' gene located on the X chromosome. LNS ...
. This genetic disease is caused by a malfunction in the
HPRT1
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is an enzyme encoded in humans by the ''HPRT1'' gene.
HGPRT is a transferase that catalyzes conversion of hypoxanthine to inosine monophosphate and guanine to guanosine monophosphate. This r ...
gene, which clinically leads to the fatal
uric acid urinary stone and symptoms similar to
gout
Gout ( ) is a form of inflammatory arthritis characterized by recurrent attacks of a red, tender, hot and swollen joint, caused by deposition of monosodium urate monohydrate crystals. Pain typically comes on rapidly, reaching maximal intensit ...
. Analyzing a pregnant mother and a
fetus
A fetus or foetus (; plural fetuses, feti, foetuses, or foeti) is the unborn offspring that develops from an animal embryo. Following embryonic development the fetal stage of development takes place. In human prenatal development, fetal deve ...
for mRNA expression levels of HPRT1 will reveal if the mother is a carrier and if the fetus will likely to develop Lesch–Nyhan syndrome.
Cancer detection
Scientists are working on ways to use RT-PCR in
cancer
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
detection to help improve
prognosis
Prognosis (Greek: πρόγνωσις "fore-knowing, foreseeing") is a medical term for predicting the likely or expected development of a disease, including whether the signs and symptoms will improve or worsen (and how quickly) or remain stabl ...
, and monitor response to therapy. Circulating
tumor cell
A neoplasm () is a type of abnormal and excessive growth of tissue (biology), tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tiss ...
s produce unique mRNA transcripts depending on the type of cancer. The goal is to determine which mRNA transcripts serve as the best
biomarkers
In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, p ...
for a particular cancer cell type and then analyze its expression levels with RT-PCR.
RT-PCR is commonly used in studying the genomes of
virus
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea.
Since Dmitri Ivanovsky's 1 ...
es whose genomes are composed of RNA, such as
Influenzavirus A
'' A virus'' (''IAV'') causes influenza in birds and some mammals, and is the only species of the genus ''Alphainfluenzavirus'' of the virus family '' Orthomyxoviridae''. Strains of all subtypes of influenza A virus have been isolated from wi ...
,
retrovirus
A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. Once inside the host cell's cytoplasm, the virus uses its own reverse transcriptase ...
es like
HIV
The human immunodeficiency viruses (HIV) are two species of ''Lentivirus'' (a subgroup of retrovirus) that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune ...
and
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the ongoing COVID-19 pandemic. The virus previously had a ...
.
Challenges
Despite its major advantages, RT-PCR is not without drawbacks. The exponential growth of the reverse transcribed
complementary DNA
In genetics, complementary DNA (cDNA) is DNA synthesized from a single-stranded RNA (e.g., messenger RNA (mRNA) or microRNA (miRNA)) template in a reaction catalyzed by the enzyme reverse transcriptase. cDNA is often used to express a spe ...
(cDNA) during the multiple cycles of PCR produces inaccurate end point quantification due to the difficulty in maintaining linearity.
In order to provide accurate detection and quantification of RNA content in a sample, qRT-PCR was developed using fluorescence-based modification to monitor the amplification products during each cycle of PCR. The extreme sensitivity of the technique can be a double edged sword since even the slightest DNA contamination can lead to undesirable results.
A simple method for elimination of false positive results is to include anchors, or
tags, to the 5' region of a gene specific primer. Additionally, planning and design of quantification studies can be technically challenging due to the existence of numerous sources of variation including template concentration and amplification efficiency.
Spiking in a known quantity of RNA into a sample, adding a series of RNA dilutions generating a standard curve, and adding in a no template copy sample (no cDNA) may used as controls.
Protocol
RT-PCR can be carried out by the one-step RT-PCR protocol or the two-step RT-PCR protocol.
One-step RT-PCR
One-step RT-PCR subjects mRNA targets (up to 6 kb) to reverse transcription followed by PCR amplification in a single test tube. It is important to note that using intact, high quality RNA and a sequence-specific primer will produce the best results.
Once a one-step RT-PCR kit with a mix of reverse transcriptase, Taq DNA polymerase, and a proofreading polymerase is selected and all necessary materials and equipment are obtained a reaction mix is to be prepared. The reaction mix includes dNTPs, primers, template RNA, necessary enzymes, and a buffer solution. The reaction mix is added to a PCR tube for each reaction, followed by template RNA. The PCR tubes are then placed in a thermal cycler to begin cycling. In the first cycle, synthesis of cDNA occurs. The second cycle is the initial denaturation wherein reverse transcriptase is inactivated. The remaining 40-50 cycles are the amplification, which includes denaturation, annealing, and elongation. When amplification is complete, the RT-PCR products can be analyzed with
gel electrophoresis
Gel electrophoresis is a method for separation and analysis of biomacromolecules ( DNA, RNA, proteins, etc.) and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size (IEF ...
.
(PCR Applications Manual and Biotools)
Two-step RT-PCR
Two-step RT-PCR, as the name implies, occurs in two steps. First the reverse transcription and then the PCR. This method is more sensitive than the one-step method. Kits are also useful for two-step RT-PCR. Just as for one-step PCR, use only intact, high quality RNA for the best results. The primer for two-step PCR does not have to be sequence specific.
Step one
First combine template RNA, primer, dNTP mix, and nuclease-free water in a PCR tube. Then, add an RNase inhibitor and reverse transcriptase to the PCR tube. Next, place the PCR tube into a thermal cycler for one cycle wherein annealing, extending, and inactivating of reverse transcriptase occurs. Finally, proceed directly to step two which is PCR or store product on ice until PCR can be performed.
Step two
Add master mix which contains buffer, dNTP mix, MgCl
2, Taq polymerase and nuclease-free water to each PCR tube. Then add the necessary primer to the tubes. Next, place the PCR tubes in a thermal cycler for 30 cycles of the amplification program. This includes: denaturation, annealing, and elongation. The products of RT-PCR can be analyzed with gel electrophoresis.
Publication guidelines
Quantitative RT-PCR assay is considered to be the gold standard for measuring the number of copies of specific cDNA targets in a sample but it is poorly standardized.
As a result, while there are numerous publications utilizing the technique, many provide inadequate experimental detail and use unsuitable data analysis to draw inappropriate conclusions. Due to the inherent variability in the quality of any quantitative PCR data, not only do reviewers have a difficult time evaluating these manuscripts, but the studies also become impossible to replicate.
Recognizing the need for the standardization of the reporting of experimental conditions, the
(MIQE, pronounced mykee) guidelines have been published by an international consortium of academic scientists. The MIQE guidelines describe the minimum information necessary for evaluating
quantitative PCR
A real-time polymerase chain reaction (real-time PCR, or qPCR) is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR (i.e., in real ...
experiments that should be required for publication for encouraging better experimental practice and ensuring the relevance, accuracy, correct interpretation, and repeatability of quantitative PCR data.
Besides reporting guidelines, the MIQE stresses the need to standardize the nomenclature associated with quantitative PCR to avoid confusion; for example, the abbreviation ''qPCR'' should be used for
quantitative real-time PCR, while ''RT-qPCR'' should be used for reverse transcription-qPCR, and genes used for normalisation should be referred to as ''reference genes'' instead of ''
housekeeping gene
In molecular biology, housekeeping genes are typically constitutive genes that are required for the maintenance of basic cellular function, and are expressed in all cells of an organism under normal and patho-physiological conditions. Although ...
s''. It also proposes that commercially derived terms like ''TaqMan probes'' should not be used, but instead referred to as ''
hydrolysis probes''. Additionally, it is proposed that quantification cycle (Cq) be used to describe the PCR cycle used for quantification instead of threshold cycle (Ct), crossing point (Cp), and takeoff point (TOP), which refer to the same value but were coined by different manufacturers of
real-time instruments.
The guideline consists of the following elements: 1) experimental design, 2) sample, 3) nucleic acid extraction, 4) reverse transcription, 5) qPCR target information, 6) oligonucleotides, 7) protocol, 8) validation, and 9) data analysis. Specific items within each element carry a label of either E (essential) or D (desirable). Those labelled E are considered critical and indispensable while those labelled D are considered peripheral yet important for best-practices.
References
External links
RT-PCR protocols from Penn state UniversityDatabase of validated PCR primer setswebsite critique
*
ttp://www.gene-quantification.info/ The Reference in qPCR – an Academic & Industrial Information PlatformTop 5 Government Rt Pcr Centres in Mumbai
{{Portal bar, Biology
Laboratory techniques
Molecular biology
Polymerase chain reaction
Biotechnology
fr:RT-PCR#Après transcription inverse