In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a multiplicative inverse or reciprocal for a
number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...
''x'', denoted by 1/''x'' or ''x''
−1, is a number which when
multiplied by ''x'' yields the
multiplicative identity
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
, 1. The multiplicative inverse of a
fraction
A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
''a''/''b'' is ''b''/''a''. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the
function
Function or functionality may refer to:
Computing
* Function key, a type of key on computer keyboards
* Function model, a structured representation of processes in a system
* Function object or functor or functionoid, a concept of object-oriente ...
''f''(''x'') that maps ''x'' to 1/''x'', is one of the simplest examples of a function which is its own inverse (an
involution
Involution may refer to:
* Involute, a construction in the differential geometry of curves
* '' Agricultural Involution: The Processes of Ecological Change in Indonesia'', a 1963 study of intensification of production through increased labour inpu ...
).
Multiplying by a number is the same as
dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1).
The term ''reciprocal'' was in common use at least as far back as the third edition of ''
Encyclopædia Britannica
The (Latin for "British Encyclopædia") is a general knowledge English-language encyclopaedia. It is published by Encyclopædia Britannica, Inc.; the company has existed since the 18th century, although it has changed ownership various time ...
'' (1797) to describe two numbers whose product is 1; geometrical quantities in inverse proportion are described as in a 1570 translation of
Euclid
Euclid (; grc-gre, Wikt:Εὐκλείδης, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Euclid's Elements, Elements'' trea ...
's ''
Elements''.
In the phrase ''multiplicative inverse'', the qualifier ''multiplicative'' is often omitted and then tacitly understood (in contrast to the
additive inverse
In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
). Multiplicative inverses can be defined over many mathematical domains as well as numbers. In these cases it can happen that ; then "inverse" typically implies that an element is both a left and right
inverse.
The notation ''f''
−1 is sometimes also used for the
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon X\t ...
of the function ''f'', which is for most functions not equal to the multiplicative inverse. For example, the multiplicative inverse is the
cosecant of x, and not the
inverse sine of ''x'' denoted by or . The terminology difference ''reciprocal'' versus ''inverse'' is not sufficient to make this distinction, since many authors prefer the opposite naming convention, probably for historical reasons (for example in
French, the inverse function is preferably called the
bijection réciproque).
Examples and counterexamples
In the real numbers,
zero
0 (zero) is a number representing an empty quantity. In place-value notation
Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or ...
does not have a reciprocal because no real number multiplied by 0 produces 1 (the product of any number with zero is zero). With the exception of zero, reciprocals of every
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
are real, reciprocals of every
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
are rational, and reciprocals of every
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
are complex. The property that every element other than zero has a multiplicative inverse is part of the definition of a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
, of which these are all examples. On the other hand, no
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
other than 1 and −1 has an integer reciprocal, and so the integers are not a field.
In
modular arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ...
, the
modular multiplicative inverse In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer is an integer such that the product is congruent to 1 with respect to the modulus .. In the standard notation of modular arithmetic this congr ...
of ''a'' is also defined: it is the number ''x'' such that . This multiplicative inverse exists
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bicondi ...
''a'' and ''n'' are
coprime
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
. For example, the inverse of 3 modulo 11 is 4 because . The
extended Euclidean algorithm
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers ''a'' and ''b'', also the coefficients of Bézout's ide ...
may be used to compute it.
The
sedenion
In abstract algebra, the sedenions form a 16-dimensional noncommutative and nonassociative algebra over the real numbers; they are obtained by applying the Cayley–Dickson construction to the octonions, and as such the octonions are isomorphic to ...
s are an algebra in which every nonzero element has a multiplicative inverse, but which nonetheless has divisors of zero, that is, nonzero elements ''x'', ''y'' such that ''xy'' = 0.
A
square matrix
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
has an inverse
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bicondi ...
its
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
has an inverse in the coefficient
ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
. The linear map that has the matrix ''A''
−1 with respect to some base is then the inverse function of the map having ''A'' as matrix in the same base. Thus, the two distinct notions of the inverse of a function are strongly related in this case, but they still do not coincide, since the multiplicative inverse of ''Ax'' would be (''Ax'')
−1, not ''A''
−1x.
These two notions of an inverse function do sometimes coincide, for example for the function
where
is the
principal branch of the complex logarithm and