Radium (company)
   HOME

TheInfoList



OR:

Radium is a chemical element with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Ra and atomic number 88. It is the sixth element in group 2 of the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) upon exposure to air, forming a black surface layer of radium nitride (Ra3N2). All isotopes of radium are radioactive, the most stable isotope being radium-226 with a half-life of 1,600 years. When radium decays, it emits
ionizing radiation Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
as a by-product, which can excite fluorescent chemicals and cause radioluminescence. Radium, in the form of radium chloride, was discovered by Marie and Pierre Curie in 1898 from ore mined at Jáchymov. They extracted the radium compound from uraninite and published the discovery at the
French Academy of Sciences The French Academy of Sciences (French: ''Académie des sciences'') is a learned society, founded in 1666 by Louis XIV of France, Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific me ...
five days later. Radium was isolated in its metallic state by Marie Curie and André-Louis Debierne through the
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
of radium chloride in 1911. In nature, radium is found in uranium and (to a lesser extent) thorium ores in trace amounts as small as a seventh of a gram per ton of uraninite. Radium is not necessary for living organisms, and adverse health effects are likely when it is incorporated into biochemical processes because of its radioactivity and chemical reactivity. , other than its use in nuclear medicine, radium has no commercial applications. Formerly, around the 1950s, it was used as a radioactive source for radioluminescent devices and also in radioactive quackery for its supposed curative power. These applications have become obsolete owing to radium's toxicity; , less dangerous isotopes (of other elements) are instead used in radioluminescent devices.


Bulk properties

Radium is the heaviest known alkaline earth metal and is the only radioactive member of its group. Its physical and chemical properties most closely resemble its lighter congener,
barium Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
. Pure radium is a volatile silvery-white metal, although its lighter congeners calcium,
strontium Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is ex ...
, and barium have a slight yellow tint.Greenwood and Earnshaw, p. 112 This tint rapidly vanishes on exposure to air, yielding a black layer of what is probably
radium nitride Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather t ...
(Ra3N2).Kirby et al., p. 4 Its melting point is either or and its
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envir ...
is ; however, this is not well established. Both of these values are slightly lower than those of barium, confirming periodic trends down the group 2 elements. Like barium and the
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
s, radium crystallizes in the body-centered cubic structure at
standard temperature and pressure Standard temperature and pressure (STP) are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union o ...
: the radium–radium bond distance is 514.8  picometers. Radium has a density of 5.5 g/cm3, higher than that of barium, again confirming periodic trends; the radium-barium density ratio is comparable to the radium-barium atomic mass ratio, due to the two elements' similar crystal structures.


Isotopes

Radium has 33 known isotopes, with mass numbers from 202 to 234: all of them are radioactive. Four of these – 223Ra ( half-life 11.4 days), 224Ra (3.64 days), 226Ra (1600 years), and 228Ra (5.75 years) – occur naturally in the decay chains of primordial thorium-232, uranium-235, and
uranium-238 Uranium-238 (238U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it ...
(223Ra from uranium-235, 226Ra from uranium-238, and the other two from thorium-232). These isotopes nevertheless still have half-lives too short to be primordial radionuclides and only exist in nature from these decay chains.Salutsky, M.L. & Kirby, H.W. THE RADIOCHEMISTRY OF RADIUM, report, December 1, 1964
United States, University of North Texas Libraries, UNT Digital Library; crediting UNT Libraries Government Documents Department. Page 3.
Together with the mostly artificial 225Ra (15 d), which occurs in nature only as a decay product of minute traces of neptunium-237, these are the five most stable isotopes of radium. All other 27 known radium isotopes have half-lives under two hours, and the majority have half-lives under a minute. At least 12 nuclear isomers have been reported; the most stable of them is radium-205m, with a half-life between 130 and 230 milliseconds; this is still shorter than twenty-four
ground-state The ground state of a quantum mechanics, quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than t ...
radium isotopes. In the early history of the study of radioactivity, the different natural isotopes of radium were given different names. In this scheme, 223Ra was named actinium X (AcX), 224Ra thorium X (ThX), 226Ra radium (Ra), and 228Ra mesothorium 1 (MsTh1). When it was realized that all of these are isotopes of the same element, many of these names fell out of use, and "radium" came to refer to all isotopes, not just 226Ra. Some of radium-226's decay products received historical names including "radium", ranging from radium A to radium G, with the letter indicating approximately how far they were down the chain from their parent 226Ra. Radium emanation = 222Rn, RaA = 218Po, RaB = 214Pb, RaC = 214Bi, RaC1 = 214Po, RaC2 = 210Tl, RaD = 210Pb, RaE = 210Bi, RaF = 210Po and RaG = 206Pb. 226Ra is the most stable isotope of radium and is the last isotope in the (4''n'' + 2) decay chain of uranium-238 with a half-life of over a millennium: it makes up almost all of natural radium. Its immediate decay product is the dense radioactive noble gas radon (specifically the isotope 222Rn), which is responsible for much of the danger of environmental radium. It is 2.7 million times more radioactive than the same molar amount of natural uranium (mostly uranium-238), due to its proportionally shorter half-life. A sample of radium metal maintains itself at a higher temperature than its surroundings because of the radiation it emits – alpha particles, beta particles, and gamma rays. More specifically, natural radium (which is mostly 226Ra) emits mostly alpha particles, but other steps in its decay chain (the uranium or radium series) emit alpha or beta particles, and almost all particle emissions are accompanied by gamma rays. In 2013, it was discovered at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
that the nucleus of radium-224 is pear-shaped using a technique called
coulomb excitation Coulomb excitation is a technique in experimental nuclear physics to probe the electromagnetic aspect of nuclear structure. In coulomb excitation, a nucleus is excited by an inelastic collision with another nucleus through the electromagnetic intera ...
. This was the first discovery of an asymmetric nucleus. This is a strong circumstantial evidence that certain heavy, unstable atomic nuclei have distorted nuclei, in this case, a pear shape.


Chemistry

Radium, like barium, is a highly reactive metal and always exhibits its group oxidation state of +2. It forms the colorless Ra2+
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
in
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be re ...
, which is highly
basic BASIC (Beginners' All-purpose Symbolic Instruction Code) is a family of general-purpose, high-level programming languages designed for ease of use. The original version was created by John G. Kemeny and Thomas E. Kurtz at Dartmouth College ...
and does not form complexes readily. Most radium compounds are therefore simple ionic compounds, though participation from the 6s and 6p electrons (in addition to the valence 7s electrons) is expected due to relativistic effects and would enhance the covalent character of radium compounds such as Ra F2 and Ra At2. For this reason, the standard electrode potential for the half-reaction Ra2+ (aq) + 2e → Ra (s) is −2.916  V, even slightly lower than the value −2.92 V for barium, whereas the values had previously smoothly increased down the group (Ca: −2.84 V; Sr: −2.89 V; Ba: −2.92 V).Greenwood and Earnshaw, p. 111 The values for barium and radium are almost exactly the same as those of the heavier alkali metals potassium,
rubidium Rubidium is the chemical element with the symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher ...
, and
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
.


Compounds

Solid radium compounds are white as radium ions provide no specific coloring, but they gradually turn yellow and then dark over time due to self-
radiolysis Radiolysis is the dissociation of molecules by ionizing radiation. It is the cleavage of one or several chemical bonds resulting from exposure to high-energy flux. The radiation in this context is associated with ionizing radiation; radiolysis is ...
from radium's alpha decay. Insoluble radium compounds coprecipitate with all barium, most
strontium Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is ex ...
, and most lead compounds.Kirby et al., p. 8
Radium oxide Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather t ...
(RaO) has not been characterized well past its existence, despite oxides being common compounds for the other alkaline earth metals.
Radium hydroxide Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather ...
(Ra(OH)2) is the most readily soluble among the alkaline earth hydroxides and is a stronger base than its barium congener, barium hydroxide.Kirby et al., pp. 4–8 It is also more soluble than actinium hydroxide and
thorium hydroxide Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high mel ...
: these three adjacent hydroxides may be separated by precipitating them with ammonia. Radium chloride (RaCl2) is a colorless, luminous compound. It becomes yellow after some time due to self-damage by the alpha radiation given off by radium when it decays. Small amounts of barium impurities give the compound a rose color. It is soluble in water, though less so than barium chloride, and its solubility decreases with increasing concentration of hydrochloric acid. Crystallization from aqueous solution gives the dihydrate RaCl2·2H2O, isomorphous with its barium analog. Radium bromide (RaBr2) is also a colorless, luminous compound. In water, it is more soluble than radium chloride. Like radium chloride, crystallization from aqueous solution gives the dihydrate RaBr2·2H2O, isomorphous with its barium analog. The ionizing radiation emitted by radium bromide excites nitrogen molecules in the air, making it glow. The alpha particles emitted by radium quickly gain two electrons to become neutral helium, which builds up inside and weakens radium bromide crystals. This effect sometimes causes the crystals to break or even explode.
Radium nitrate Radium nitrate is a radioactive salt with the formula Ra(NO3)2. It is a white solid, but old samples appear yellowish-grey. It has a lower solubility than barium nitrate. It decomposes at 280 °C to radium oxide. Production Radium nitrate is prod ...
(Ra(NO3)2) is a white compound that can be made by dissolving
radium carbonate Radium carbonate is a compound of radium, carbon, and oxygen. This salt is a poisonous, radioactive, Amorphous solid, amorphous, white powder that is used in medicine. It is notable for being more soluble than barium carbonate, unlike other Radium# ...
in nitric acid. As the concentration of nitric acid increases, the solubility of radium nitrate decreases, an important property for the chemical purification of radium. Radium forms much the same insoluble salts as its lighter congener barium: it forms the insoluble sulfate (RaSO4, the most insoluble known sulfate), chromate (RaCrO4), carbonate (RaCO3), iodate (Ra(IO3)2),
tetrafluoroberyllate Tetrafluoroberyllate or orthofluoroberyllate is an anion containing beryllium and fluorine. The fluoroanion has a tetrahedral shape, with the four fluorine atoms surrounding a central beryllium atom. It has the same size and outer electron struct ...
(RaBeF4), and nitrate (Ra(NO3)2). With the exception of the carbonate, all of these are less soluble in water than the corresponding barium salts, but they are all isostructural to their barium counterparts. Additionally, radium phosphate, oxalate, and
sulfite Sulfites or sulphites are compounds that contain the sulfite ion (or the sulfate(IV) ion, from its correct systematic name), . The sulfite ion is the conjugate base of bisulfite. Although its acid ( sulfurous acid) is elusive, its salts are wide ...
are probably also insoluble, as they coprecipitate with the corresponding insoluble barium salts.Kirby et al., pp. 8–9 The great insolubility of radium sulfate (at 20 °C, only 2.1  mg will dissolve in 1  kg of water) means that it is one of the less biologically dangerous radium compounds.Kirby et al., p. 12 The large ionic radius of Ra2+ (148 pm) results in weak complexation and poor extraction of radium from aqueous solutions when not at high pH.


Occurrence

All isotopes of radium have half-lives much shorter than the
age of the Earth The age of Earth is estimated to be 4.54 ± 0.05 billion years This age may represent the age of Earth's accretion, or core formation, or of the material from which Earth formed. This dating is based on evidence from radiometric age-dating of ...
, so that any primordial radium would have decayed long ago. Radium nevertheless still occurs in the environment, as the isotopes 223Ra, 224Ra, 226Ra, and 228Ra are part of the decay chains of natural thorium and uranium isotopes; since thorium and uranium have very long half-lives, these daughters are continually being regenerated by their decay. Of these four isotopes, the longest-lived is 226Ra (half-life 1600 years), a decay product of natural uranium. Because of its relative longevity, 226Ra is the most common isotope of the element, making up about one
part per trillion In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantity, dimensionless quantities, e.g. mole fraction or mass fraction (chemistry), mass fraction. Since these f ...
of the Earth's crust; essentially all natural radium is 226Ra. Thus, radium is found in tiny quantities in the uranium ore uraninite and various other uranium minerals, and in even tinier quantities in thorium minerals. One ton of pitchblende typically yields about one seventh of a gram of radium. One kilogram of the
Earth's crust Earth's crust is Earth's thin outer shell of rock, referring to less than 1% of Earth's radius and volume. It is the top component of the lithosphere, a division of Earth's layers that includes the crust and the upper part of the mantle. The ...
contains about 900  picograms of radium, and one
liter The litre (international spelling) or liter (American English spelling) (SI symbols L and l, other symbol used: ℓ) is a metric unit of volume. It is equal to 1 cubic decimetre (dm3), 1000 cubic centimetres (cm3) or 0.001 cubic metre (m3). ...
of
sea water Seawater, or salt water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has approx ...
contains about 89  femtograms of radium.Section 14, Geophysics, Astronomy, and Acoustics; Abundance of Elements in the Earth's Crust and in the Sea, in Lide, David R. (ed.), ''
CRC Handbook of Chemistry and Physics The ''CRC Handbook of Chemistry and Physics'' is a comprehensive one-volume reference resource for science research. First published in 1914, it is currently () in its 103rd edition, published in 2022. It is sometimes nicknamed the "Rubber Bible ...
, 85th Edition''. CRC Press. Boca Raton, Florida (2005).


History

Radium was discovered by
Marie Skłodowska-Curie Marie Salomea Skłodowska–Curie ( , , ; born Maria Salomea Skłodowska, ; 7 November 1867 – 4 July 1934) was a Polish and naturalized-French physicist and chemist who conducted pioneering research on radioactivity. She was the first ...
and her husband Pierre Curie on 21 December 1898, in a uraninite (pitchblende) sample from Jáchymov.Hammond, C. R. "Radium" in While studying the mineral earlier, the Curies removed uranium from it and found that the remaining material was still radioactive. In July 1898, while studying pitchblende, they isolated an element similar to bismuth which turned out to be polonium. They then isolated a radioactive mixture consisting of two components: compounds of
barium Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
, which gave a brilliant green flame color, and unknown radioactive compounds which gave
carmine Carmine ()also called cochineal (when it is extracted from the cochineal insect), cochineal extract, crimson lake, or carmine lake is a pigment of a bright-red color obtained from the aluminium complex derived from carminic acid. Specific code n ...
spectral lines that had never been documented before. The Curies found the radioactive compounds to be very similar to the barium compounds, except they were less soluble. This discovery made it possible for the Curies to isolate the radioactive compounds and discover a new element in them. The Curies announced their discovery to the
French Academy of Sciences The French Academy of Sciences (French: ''Académie des sciences'') is a learned society, founded in 1666 by Louis XIV of France, Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific me ...
on 26 December 1898. The naming of radium dates to about 1899, from the French word ''radium'', formed in Modern Latin from ''radius'' (''ray''): this was in recognition of radium's power of emitting energy in the form of rays. In September 1910, Marie Curie and André-Louis Debierne announced that they had isolated radium as a pure metal through the
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
of pure radium chloride (RaCl2) solution using a
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
cathode, producing radium–mercury amalgam. This amalgam was then heated in an atmosphere of hydrogen gas to remove the mercury, leaving pure radium metal. Later that same year, E. Eoler isolated radium by thermal decomposition of its
azide In chemistry, azide is a linear, polyatomic anion with the formula and structure . It is the conjugate base of hydrazoic acid . Organic azides are organic compounds with the formula , containing the azide functional group. The dominant applic ...
, Ra(N3)2. Radium metal was first industrially produced at the beginning of the 20th century by Biraco, a subsidiary company of Union Minière du Haut Katanga (UMHK) in its Olen plant in Belgium. The general historical unit for radioactivity, the curie, is based on the radioactivity of 226Ra: it was originally defined as the radioactivity of one gram of radium-226, but the definition was later slightly refined to be .


Historical applications


Luminescent paint

Radium was formerly used in
self-luminous ''Advaita Vedanta'' (; sa, अद्वैत वेदान्त, ) is a Hindu sādhanā, a path of spiritual discipline and experience, and the oldest extant tradition of the orthodox Hindu school Vedānta. The term ''Advaita'' (li ...
paints for watches, nuclear panels, aircraft switches, clocks, and instrument dials. A typical self-luminous watch that uses radium paint contains around 1 microgram of radium. In the mid-1920s, a lawsuit was filed against the United States Radium Corporation by five dying "
Radium Girls The Radium Girls were female factory workers who contracted radiation poisoning from painting watch dials with self-luminous paint. The incidents occurred at three different factories: one in Orange, New Jersey, beginning around 1917; one in Ott ...
" – dial painters who had painted radium-based luminous paint on the dials of watches and clocks. The dial painters were instructed to lick their brushes to give them a fine point, thereby ingesting radium. Their exposure to radium caused serious health effects which included sores, anemia, and bone cancer. During the litigation, it was determined that the company's scientists and management had taken considerable precautions to protect themselves from the effects of radiation, but it did not seem to protect their employees. Additionally, for several years the companies had attempted to cover up the effects and avoid liability by insisting that the Radium Girls were instead suffering from
syphilis Syphilis () is a sexually transmitted infection caused by the bacterium ''Treponema pallidum'' subspecies ''pallidum''. The signs and symptoms of syphilis vary depending in which of the four stages it presents (primary, secondary, latent, an ...
. This complete disregard for employee welfare had a significant impact on the formulation of occupational disease labor law. As a result of the lawsuit, the adverse effects of radioactivity became widely known, and radium-dial painters were instructed in proper safety precautions and provided with protective gear. In particular, dial painters no longer licked paint brushes to shape them (which caused some ingestion of radium salts). Radium was still used in dials as late as the 1960s, but there were no further injuries to dial painters. This highlighted that the harm to the Radium Girls could easily have been avoided. From the 1960s the use of radium paint was discontinued. In many cases luminous dials were implemented with non-radioactive fluorescent materials excited by light; such devices glow in the dark after exposure to light, but the glow fades. Where long-lasting self-luminosity in darkness was required, safer radioactive
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of onl ...
-147 (half-life 2.6 years) or tritium (half-life 12 years) paint was used; both continue to be used as of 2004. These had the added advantage of not degrading the phosphor over time, unlike radium. Tritium emits very low-energy beta radiation (even lower-energy than the beta radiation emitted by promethium) which cannot penetrate the skin, rather than the penetrating gamma radiation of radium, and is regarded as safer. Clocks, watches, and instruments dating from the first half of the 20th century, often in military applications, may have been painted with radioactive luminous paint. They are usually no longer luminous; however, this is not due to radioactive decay of the radium (which has a half-life of 1600 years) but to the fluorescence of the zinc sulfide fluorescent medium being worn out by the radiation from the radium. The appearance of an often thick layer of green or yellowish brown paint in devices from this period suggests a radioactive hazard. The radiation dose from an intact device is relatively low and usually not an acute risk; but the paint is dangerous if released and inhaled or ingested.Radium
''Encyclopædia Britannica''


Commercial use

Radium was once an additive in products such as toothpaste, hair creams, and even food items due to its supposed curative powers. Such products soon fell out of vogue and were prohibited by authorities in many countries after it was discovered they could have serious adverse health effects. (See, for instance, '' Radithor'' or ''
Revigator The radium ore Revigator was a pseudoscientific medical device consisting of a ceramic water crock lined with radioactive materials. It was patented in 1912 by R. W. Thomas. Thomas was working at the time as a stock salesman in Arizona but, by 1 ...
'' types of "radium water" or "Standard Radium Solution for Drinking".) Spas featuring radium-rich water are still occasionally touted as beneficial, such as those in Misasa, Tottori, Japan. In the U.S., nasal radium irradiation was also administered to children to prevent middle-ear problems or enlarged tonsils from the late 1940s through the early 1970s.


Medical use

Radium (usually in the form of radium chloride or radium bromide) was used in medicine to produce radon gas, which in turn was used as a cancer treatment; for example, several of these radon sources were used in Canada in the 1920s and 1930s. However, many treatments that were used in the early 1900s are not used anymore because of the harmful effects radium bromide exposure caused. Some examples of these effects are anaemia, cancer, and genetic mutations. , safer gamma emitters such as 60Co, which is less costly and available in larger quantities, are usually used to replace the historical use of radium in this application. Early in the 1900s, biologists used radium to induce mutations and study genetics. As early as 1904, Daniel MacDougal used radium in an attempt to determine whether it could provoke sudden large mutations and cause major evolutionary shifts. Thomas Hunt Morgan used radium to induce changes resulting in white-eyed fruit flies. Nobel-winning biologist Hermann Muller briefly studied the effects of radium on fruit fly mutations before turning to more affordable x-ray experiments. Howard Atwood Kelly, one of the founding physicians of Johns Hopkins Hospital, was a major pioneer in the medical use of radium to treat cancer. His first patient was his own aunt in 1904, who died shortly after surgery. Kelly was known to use excessive amounts of radium to treat various cancers and tumors. As a result, some of his patients died from radium exposure. His method of radium application was inserting a radium capsule near the affected area, then sewing the radium "points" directly to the tumor. This was the same method used to treat Henrietta Lacks, the host of the original HeLa cells, for
cervical cancer Cervical cancer is a cancer arising from the cervix. It is due to the abnormal growth of cells that have the ability to invade or spread to other parts of the body. Early on, typically no symptoms are seen. Later symptoms may include abnormal ...
. As of 2015, safer and more available radioisotopes are used instead.


Production

Uranium had no large scale application in the late 19th century and therefore no large uranium mines existed. In the beginning the only large source for uranium ore was the silver mines in Jáchymov, Austria-Hungary (now Czech Republic). The uranium ore was only a
byproduct A by-product or byproduct is a secondary product derived from a production process, manufacturing process or chemical reaction; it is not the primary product or service being produced. A by-product can be useful and marketable or it can be consid ...
of the mining activities. In the first extraction of radium, Curie used the residues after extraction of uranium from pitchblende. The uranium had been extracted by dissolution in
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
leaving radium sulfate, which is similar to
barium sulfate Barium sulfate (or sulphate) is the inorganic compound with the chemical formula Ba SO4. It is a white crystalline solid that is odorless and insoluble in water. It occurs as the mineral barite, which is the main commercial source of barium an ...
but even less soluble in the residues. The residues also contained rather substantial amounts of barium sulfate which thus acted as a carrier for the radium sulfate. The first steps of the radium extraction process involved boiling with sodium hydroxide, followed by hydrochloric acid treatment to minimize impurities of other compounds. The remaining residue was then treated with
sodium carbonate Sodium carbonate, , (also known as washing soda, soda ash and soda crystals) is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield moderately alkaline solutions ...
to convert the barium sulfate into barium carbonate (carrying the radium), thus making it soluble in hydrochloric acid. After dissolution, the barium and radium were reprecipitated as sulfates; this was then repeated to further purify the mixed sulfate. Some impurities that form insoluble sulfides were removed by treating the chloride solution with hydrogen sulfide, followed by filtering. When the mixed sulfates were pure enough, they were once more converted to mixed chlorides; barium and radium thereafter were separated by fractional crystallisation while monitoring the progress using a spectroscope (radium gives characteristic red lines in contrast to the green barium lines), and the electroscope. After the isolation of radium by Marie and Pierre Curie from uranium ore from Jáchymov, several scientists started to isolate radium in small quantities. Later, small companies purchased mine tailings from Jáchymov mines and started isolating radium. In 1904, the Austrian government
nationalised Nationalization (nationalisation in British English) is the process of transforming privately-owned assets into public assets by bringing them under the public ownership of a national government or state. Nationalization usually refers to pri ...
the mines and stopped exporting raw ore. Until 1912 when radium production increased, radium availability was low. The formation of an Austrian monopoly and the strong urge of other countries to have access to radium led to a worldwide search for uranium ores. The United States took over as leading producer in the early 1910s. The Carnotite sands in Colorado provide some of the element, but richer ores are found in the
Congo Congo or The Congo may refer to either of two countries that border the Congo River in central Africa: * Democratic Republic of the Congo, the larger country to the southeast, capital Kinshasa, formerly known as Zaire, sometimes referred to a ...
and the area of the Great Bear Lake and the Great Slave Lake of northwestern Canada. Neither of the deposits is mined for radium but the uranium content makes mining profitable. The Curies' process was still used for industrial radium extraction in 1940, but mixed bromides were then used for the fractionation. If the barium content of the uranium ore is not high enough it is easy to add some to carry the radium. These processes were applied to high grade uranium ores but may not work well with low grade ores. Small amounts of radium were still extracted from uranium ore by this method of mixed precipitation and ion exchange as late as the 1990s,Greenwood and Earnshaw, pp. 109–110 but as of 2011, they are extracted only from spent nuclear fuel. In 1954, the total worldwide supply of purified radium amounted to about and it is still in this range in 2015, while the annual production of pure radium compounds is only about 100 g in total as of 1984. The chief radium-producing countries are Belgium, Canada, the Czech Republic, Slovakia, the United Kingdom, and Russia. The amounts of radium produced were and are always relatively small; for example, in 1918, 13.6 g of radium were produced in the United States. The metal is isolated by reducing radium oxide with aluminium metal in a vacuum at 1,200 °C.


Modern applications

Radium is seeing increasing use in the field of atomic, molecular, and optical physics. Symmetry breaking forces scale proportional to Z^3, which makes radium, the heaviest alkaline earth element, well suited for constraining new physics beyond the
standard model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
. Some radium isotopes, such as radium-225, have octupole deformed parity doublets that enhance sensitivity to charge parity violating new physics by two to three orders of magnitude compared to 199Hg. Radium is also a promising candidate for trapped ion optical clocks. The radium ion has two subhertz-linewidth transitions from the 7s^2S_ ground state that could serve as the clock transition in an optical clock. A 226Ra+ trapped ion atomic clock has been demonstrated on the 7s^2S_ to 6d^2D_ transition. Additionally, radium is particularly well suited for a transportable optical clock as all transitions necessary for clock operation can be addressed with direct diode lasers at common wavelengths. Though radium has no stable isotopes, there are eleven radium isotopes with half-lives longer than one minute that could be compared with high precision on a King plot. Isotope shifts could be measured with high precision on either of the radium ion subhertz-linewidth transitions from the ground state, or on the ^1S_0 to ^3P_0 intercombination line in neutral radium. The degree of any potential nonlinearities in such a King plot could set bounds on new physics beyond the standard model. Some of the few practical uses of radium are derived from its radioactive properties. More recently discovered radioisotopes, such as cobalt-60 and caesium-137, are replacing radium in even these limited uses because several of these isotopes are more powerful emitters, safer to handle, and available in more concentrated form. The isotope 223Ra (the chloride is under the trade name Xofigo) was approved by the United States Food and Drug Administration in 2013 for use in medicine as a cancer treatment of bone metastasis. The main indication of treatment with Xofigo is the therapy of bony metastases from castration-resistant prostate cancer due to the favourable characteristics of this alpha-emitter radiopharmaceutical. 225Ra has also been used in experiments concerning therapeutic irradiation, as it is the only reasonably long-lived radium isotope which does not have radon as one of its daughters. Radium is still used in 2007 as a radiation source in some industrial radiography devices to check for flawed metallic parts, similarly to X-ray imaging. When mixed with beryllium, radium acts as a neutron source. , radium-beryllium neutron sources are still sometimes used,Radium: Radiation Protection
United States Environmental Protection Agency
but other materials such as polonium are more common: about 1,500 polonium-beryllium neutron sources, with an individual activity of , have been used annually in Russia. These RaBeF4-based (α, n) neutron sources have been deprecated despite the high number of neutrons they emit (1.84×106 neutrons per second) in favour of 241Am–Be sources. , the isotope 226Ra is mainly used to form 227 Ac by neutron irradiation in a nuclear reactor.


Hazards

Radium is highly radioactive, and its immediate daughter, radon gas, is also radioactive. When ingested, 80% of the ingested radium leaves the body through the
feces Feces ( or faeces), known colloquially and in slang as poo and poop, are the solid or semi-solid remains of food that was not digested in the small intestine, and has been broken down by bacteria in the large intestine. Feces contain a relati ...
, while the other 20% goes into the bloodstream, mostly accumulating in the bones. This is because the body treats radium as calcium and deposits it in the bones, where radioactivity degrades marrow and can mutate
bone cells An osteocyte, an oblate shaped type of bone cell with dendritic processes, is the most commonly found cell in mature bone. It can live as long as the organism itself. The adult human body has about 42 billion of them. Osteocytes do not divide an ...
. Exposure to radium, internal or external, can cause cancer and other disorders, because radium and radon emit alpha and gamma rays upon their decay, which kill and mutate cells. At the time of the Manhattan Project in 1944, the "tolerance dose" for workers was set at 0.1 micrograms of ingested radium. Some of the biological effects of radium include the first case of "radium-dermatitis", reported in 1900, two years after the element's discovery. The French physicist
Antoine Becquerel Antoine Henri Becquerel (; 15 December 1852 – 25 August 1908) was a French engineer, physicist, Nobel laureate, and the first person to discover evidence of radioactivity. For work in this field he, along with Marie Skłodowska-Curie and Pi ...
carried a small ampoule of radium in his waistcoat pocket for six hours and reported that his skin became ulcerated. Pierre and Marie Curie were so intrigued by radiation that they sacrificed their own health to learn more about it. Pierre Curie attached a tube filled with radium to his arm for ten hours, which resulted in the appearance of a skin lesion, suggesting the use of radium to attack cancerous tissue as it had attacked healthy tissue. Handling of radium has been blamed for Marie Curie's death due to
aplastic anemia Aplastic anemia is a cancer in which the body fails to make blood cells in sufficient numbers. Blood cells are produced in the bone marrow by stem cells that reside there. Aplastic anemia causes a deficiency of all blood cell types: red blood ...
. A significant amount of radium's danger comes from its daughter radon: being a gas, it can enter the body far more readily than can its parent radium. , 226Ra is considered to be the most toxic of the quantity radioelements, and it must be handled in tight glove boxes with significant airstream circulation that is then treated to avoid escape of its daughter 222Rn to the environment. Old ampoules containing radium solutions must be opened with care because radiolytic decomposition of water can produce an overpressure of hydrogen and oxygen gas. The world's largest concentration of 226Ra is stored within the Interim Waste Containment Structure, approximately north of
Niagara Falls, New York Niagara Falls is a City (New York), city in Niagara County, New York, United States. As of the 2020 United States Census, 2020 census, the city had a total population of 48,671. It is adjacent to the Niagara River, across from the city of Niagara ...
. The Maximum Contaminant Level (MCL) for radium is 5pCi/L for drinking water, however, the OSHA doesn't set a exposure limit, as there is a radiation limit already set up.


See also


Notes


References


Bibliography

* *


Further reading

* * * * * *


External links

*
Photos of Radium Water Bath in Oklahoma

NLM Hazardous Substances Databank – Radium, Radioactive

Annotated bibliography for radium from the Alsos Digital Library for Nuclear Issues


at '' The Periodic Table of Videos'' (University of Nottingham) {{Radium compounds Chemical elements Alkaline earth metals Chemical elements with body-centered cubic structure Marie Curie Pierre Curie