Radiation protection, also known as radiological protection, is defined by the
International Atomic Energy Agency
The International Atomic Energy Agency (IAEA) is an intergovernmental organization that seeks to promote the peaceful use of nuclear technology, nuclear energy and to inhibit its use for any military purpose, including nuclear weapons. It was ...
(IAEA) as "The protection of people from harmful effects of exposure to
ionizing radiation
Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
, and the means for achieving this". Exposure can be from a source of radiation external to the human body or due to internal
irradiation caused by the ingestion of
radioactive contamination
Radioactive contamination, also called radiological pollution, is the deposition of, or presence of Radioactive decay, radioactive substances on surfaces or within solids, liquids, or gases (including the human body), where their presence is uni ...
.
Ionizing radiation is widely used in industry and medicine, and can present a significant health hazard by causing microscopic damage to living tissue. There are two main categories of ionizing radiation health effects. At high exposures, it can cause "tissue" effects, also called "deterministic" effects due to the certainty of them happening, conventionally indicated by the unit
gray and resulting in
acute radiation syndrome
Acute radiation syndrome (ARS), also known as radiation sickness or radiation poisoning, is a collection of health effects that are caused by being exposed to high amounts of ionizing radiation in a short period of time. Symptoms can start wit ...
. For low level exposures there can be statistically elevated risks of
radiation-induced cancer
Exposure to ionizing radiation is known to increase the future incidence of cancer, particularly leukemia. The mechanism by which this occurs is well understood, but quantitative models predicting the level of risk remain controversial. The most wi ...
, called "
stochastic Stochastic (; ) is the property of being well-described by a random probability distribution. ''Stochasticity'' and ''randomness'' are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; i ...
effects" due to the uncertainty of them happening, conventionally indicated by the unit
sievert
The sievert (symbol: SvPlease note there are two non-SI units that use the same Sv abbreviation: the sverdrup and svedberg.) is a derived unit in the International System of Units (SI) intended to represent the stochastic health risk of ionizin ...
.
Fundamental to radiation protection is the avoidance or reduction of dose using the simple protective measures of time, distance and shielding. The duration of exposure should be limited to that necessary, the distance from the source of radiation should be maximised, and the source or the target shielded wherever possible. To measure personal dose uptake in occupational or emergency exposure, for external radiation
personal dosimeters are used, and for internal dose due to ingestion of radioactive contamination, bioassay techniques are applied.
For radiation protection and
dosimetry
Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingest ...
assessment the
International Commission on Radiation Protection (ICRP) and
International Commission on Radiation Units and Measurements (ICRU) publish recommendations and data which is used to calculate the biological effects on the human body of certain levels of radiation, and thereby advise acceptable dose uptake limits.
Principles

The ICRP recommends, develops and maintains the International System of Radiological Protection, based on evaluation of the large body of scientific studies available to equate risk to received dose levels. The system's health objectives are "to manage and control exposures to ionising radiation so that deterministic effects are prevented, and the risks of stochastic effects are reduced to the extent reasonably achievable".
The ICRP's recommendations flow down to national and regional regulators, which have the opportunity to incorporate them into their own law; this process is shown in the accompanying block diagram. In most countries a national regulatory authority works towards ensuring a secure radiation environment in society by setting dose limitation requirements that are generally based on the recommendations of the ICRP.
Exposure situations
The ICRP recognises planned, emergency, and existing exposure situations, as described below;
* Planned exposure – defined as "...where radiological protection can be planned in advance, before exposures occur, and where the magnitude and extent of the exposures can be reasonably predicted." These are such as in occupational exposure situations, where it is necessary for personnel to work in a known radiation environment.
* Emergency exposure – defined as "...unexpected situations that may require urgent protective actions". This would be such as an emergency nuclear event.
* Existing exposure – defined as "...being those that already exist when a decision on control has to be taken". These can be such as from
naturally occurring radioactive material
Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive materials, radioactive elem ...
s which exist in the environment.
Regulation of dose uptake
The ICRP uses the following overall principles for all controllable exposure situations.
* Justification: No unnecessary use of radiation is permitted, which means that the advantages must outweigh the disadvantages.
* Limitation: Each individual must be protected against risks that are too great, through the application of individual radiation dose limits.
* Optimization: This process is intended for application to those situations that have been deemed to be justified. It means "the likelihood of incurring exposures, the number of people exposed, and the magnitude of their individual doses" should all be kept As Low As Reasonably Achievable (or Reasonably Practicable) known as
ALARA or ALARP. It takes into account economic and societal factors.
Factors in external dose uptake
There are three factors that control the amount, or dose, of radiation received from a source. Radiation exposure can be managed by a combination of these factors:
#Time: Reducing the time of an exposure reduces the
effective dose proportionally. An example of reducing radiation doses by reducing the time of exposures might be improving operator training to reduce the time they take to handle a radioactive source.
#Distance: Increasing distance reduces dose due to the
inverse square law
In science, an inverse-square law is any scientific law stating that the observed "intensity" of a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cau ...
. Distance can be as simple as handling a source with
forceps
Forceps (: forceps or considered a plural noun without a singular, often a pair of forceps; the Latin plural ''forcipes'' is no longer recorded in most dictionaries) are a handheld, hinged instrument used for grasping and holding objects. Forcep ...
rather than fingers. For example, if a problem arises during fluoroscopic procedure step away from the patient if feasible.
#Shielding: Sources of radiation can be shielded with solid or liquid material, which absorbs the energy of the radiation. The term 'biological shield' is used for absorbing material placed around a nuclear reactor, or other source of radiation, to reduce the radiation to a level safe for humans. The shielding materials are concrete and lead shield which is 0.25 mm thick for secondary radiation and 0.5 mm thick for primary radiation
Internal dose uptake

Internal dose, due to the inhalation or ingestion of radioactive substances, can result in stochastic or deterministic effects, depending on the amount of radioactive material ingested and other
biokinetic factors.
The risk from a low level internal source is represented by the dose quantity
committed dose
The committed dose in radiological protection is a measure of the stochastic health risk due to an intake of radioactive material into the human body. Stochastic in this context is defined as the ''probability'' of cancer induction and genetic dam ...
, which has the same risk as the same amount of external
effective dose.
The intake of radioactive material can occur through four pathways:
*inhalation of airborne contaminants such as
radon
Radon is a chemical element; it has symbol Rn and atomic number 86. It is a radioactive noble gas and is colorless and odorless. Of the three naturally occurring radon isotopes, only Rn has a sufficiently long half-life (3.825 days) for it to b ...
gas and radioactive particles
*ingestion of radioactive contamination in food or liquids
*absorption of vapours such as
tritium
Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
oxide through the skin
*injection of medical radioisotopes such as
technetium-99m
Technetium-99m (99mTc) is a metastable nuclear isomer of technetium-99 (itself an isotope of technetium), symbolized as 99mTc, that is used in tens of millions of medical diagnostic procedures annually, making it the most commonly used Radiophar ...
The occupational hazards from airborne radioactive particles in nuclear and radio-chemical applications are greatly reduced by the extensive use of
gloveboxes to contain such material. To protect against breathing in radioactive particles in ambient air,
respirators
A respirator is a device designed to protect the wearer from inhaling hazardous atmospheres including lead, lead fumes, vapors, gases and particulate matter such as dusts and airborne pathogens such as viruses. There are two main categories o ...
with particulate filters are worn.
To monitor the concentration of radioactive particles in ambient air,
radioactive particulate monitoring instruments measure the concentration or presence of airborne materials.
For ingested radioactive materials in food and drink, specialist laboratory radiometric assay methods are used to measure the concentration of such materials.
Recommended limits on dose uptake


The ICRP recommends a number of limits for dose uptake in table 8 of ICRP report 103. These limits are "situational", for planned, emergency and existing situations. Within these situations, limits are given for certain exposed groups;
* Planned exposure – limits given for occupational, medical and public exposure. The occupational exposure limit of effective dose is 20
mSv per year, averaged over defined periods of 5 years, with no single year exceeding 50 mSv. The public exposure limit is 1 mSv in a year.
* Emergency exposure – limits given for occupational and public exposure
* Existing exposure – reference levels for all persons exposed
The public information dose chart of the USA Department of Energy, shown here on the right, applies to USA regulation, which is based on ICRP recommendations. Note that examples in lines 1 to 4 have a scale of dose rate (radiation per unit time), whilst 5 and 6 have a scale of total accumulated dose.
ALARP & ALARA
ALARP is an acronym for an important principle in exposure to radiation and other occupational health risks and in the UK stands for As Low As Reasonably Practicable. The aim is to minimize the risk of
radioactive exposure or other hazard while keeping in mind that some exposure may be acceptable in order to further the task at hand. The equivalent term ALARA, As Low As Reasonably Achievable, is more commonly used outside the UK.
This compromise is well illustrated in
radiology
Radiology ( ) is the medical specialty that uses medical imaging to diagnose diseases and guide treatment within the bodies of humans and other animals. It began with radiography (which is why its name has a root referring to radiation), but tod ...
. The application of
radiation
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes:
* ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
can aid the patient by providing doctors and other health care professionals with a medical diagnosis, but the exposure of the patient should be reasonably low enough to keep the statistical probability of
cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
s or
sarcoma
A sarcoma is a rare type of cancer that arises from cells of mesenchymal origin. Originating from mesenchymal cells means that sarcomas are cancers of connective tissues such as bone, cartilage, muscle, fat, or vascular tissues.
Sarcom ...
s (stochastic effects) below an acceptable level, and to eliminate deterministic effects (e.g. skin reddening or cataracts). An acceptable level of incidence of stochastic effects is considered to be equal for a worker to the risk in other radiation work generally considered to be safe.
This policy is based on the principle that any amount of radiation exposure, no matter how small, can increase the chance of negative biological effects such as
cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
. It is also based on the principle that the probability of the occurrence of negative effects of radiation exposure increases with cumulative lifetime dose. These ideas are combined to form the
linear no-threshold model which says that there is not a threshold at which there is an increase in the rate of occurrence of stochastic effects with increasing dose. At the same time, radiology and other practices that involve use of ionizing radiation bring benefits, so reducing radiation exposure can reduce the efficacy of a medical practice. The economic cost, for example of adding a barrier against radiation, must also be considered when applying the ALARP principle.
Computed tomography
A computed tomography scan (CT scan), formerly called computed axial tomography scan (CAT scan), is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or ...
, better known as
CT scan
A computed tomography scan (CT scan), formerly called computed axial tomography scan (CAT scan), is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or ...
s or CAT scans have made an enormous contribution to medicine, however not without some risk. The ionizing radiation used in CT scans can lead to
radiation-induced cancer
Exposure to ionizing radiation is known to increase the future incidence of cancer, particularly leukemia. The mechanism by which this occurs is well understood, but quantitative models predicting the level of risk remain controversial. The most wi ...
.
Age is a significant factor in risk associated with CT scans,
and in procedures involving children and systems that do not require extensive imaging, lower doses are used.
Personal radiation dosimeters
The radiation dosimeter is an important personal dose measuring instrument. It is worn by the person being monitored and is used to estimate the external radiation dose deposited in the individual wearing the device. They are used for gamma, X-ray, beta and other strongly penetrating radiation, but not for weakly penetrating radiation such as alpha particles. Traditionally, film badges were used for long-term monitoring, and quartz fibre dosimeters for short-term monitoring. However, these have been mostly superseded by thermoluminescent dosimetry (TLD) badges and electronic dosimeters. Electronic dosimeters can give an alarm warning if a preset dose threshold has been reached, enabling safer working in potentially higher radiation levels, where the received dose must be continually monitored.
Workers exposed to radiation, such as
radiographer
Radiographers, also known as radiology technologists, radiologic technologists, diagnostic radiographers and medical radiation technologists, are healthcare professionals who specialise in the imaging of human anatomy for the diagnosis and tr ...
s,
nuclear power plant
A nuclear power plant (NPP), also known as a nuclear power station (NPS), nuclear generating station (NGS) or atomic power station (APS) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power st ...
workers, doctors using
radiotherapy
Radiation therapy or radiotherapy (RT, RTx, or XRT) is a treatment using ionizing radiation, generally provided as part of cancer therapy to either kill or control the growth of malignant cells. It is normally delivered by a linear particle ...
, those in laboratories using
radionuclide
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s, and
HAZMAT teams are required to wear dosimeters so a record of occupational exposure can be made. Such devices are generally termed "legal dosimeters" if they have been approved for use in recording personnel dose for regulatory purposes.
Dosimeters can be worn to obtain a whole body dose and there are also specialist types that can be worn on the fingers or clipped to headgear, to measure the localised body irradiation for specific activities.
Common types of wearable dosimeters for ionizing radiation include:
*
Film badge dosimeter
*
Quartz fibre dosimeter
*
Electronic personal dosimeter
The electronic personal dosimeter (EPD) is a modern electronic dosimeter for estimating uptake of ionising radiation equivalent dose, dose of the individual wearing it for radiation protection purposes. The electronic personal dosimeter has the a ...
*
Thermoluminescent dosimeter
Radiation protection

Almost any material can act as a shield from
gamma
Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally repr ...
or x-rays if used in sufficient amounts. Different types of
ionizing radiation
Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
interact in different ways with shielding material. The effectiveness of shielding is dependent on
stopping power
Stopping power is the supposed ability of a weapon – typically a ranged weapon such as a firearm – to cause a target (human or animal) to be incapacitated or immobilized. Stopping power contrasts with lethality in that it pertains only to a ...
, which varies with the type and energy of radiation and the shielding material used. Different shielding techniques are therefore used depending on the application and the type and energy of the radiation.
Shielding reduces the intensity of radiation, increasing with thickness. This is an exponential relationship with gradually diminishing effect as equal slices of shielding material are added. A quantity known as the
halving-thicknesses is used to calculate this. For example, a practical shield in a
fallout shelter with ten
halving-thicknesses of packed dirt, which is roughly , reduces gamma rays to 1/1024 of their original intensity (i.e. 2
−10).
The effectiveness of a shielding material in general increases with its atomic number, called ''Z'', except for neutron shielding, which is more readily shielded by the likes of
neutron absorber
In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable ef ...
s and
moderators such as compounds of
boron
Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
e.g.
boric acid
Boric acid, more specifically orthoboric acid, is a compound of boron, oxygen, and hydrogen with formula . It may also be called hydrogen orthoborate, trihydroxidoboron or boracic acid. It is usually encountered as colorless crystals or a white ...
,
cadmium
Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
,
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
.
Graded-''Z'' shielding is a laminate of several materials with different ''Z'' values (
atomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
s) designed to protect against
ionizing radiation
Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
. Compared to single-material shielding, the same mass of graded-''Z'' shielding has been shown to reduce electron penetration over 60%. It is commonly used in satellite-based particle detectors, offering several benefits:
* protection from radiation damage
* reduction of background noise for detectors
* lower mass compared to single-material shielding
Designs vary, but typically involve a gradient from high-''Z'' (usually
tantalum
Tantalum is a chemical element; it has Symbol (chemistry), symbol Ta and atomic number 73. It is named after Tantalus, a figure in Greek mythology. Tantalum is a very hard, ductility, ductile, lustre (mineralogy), lustrous, blue-gray transition ...
) through successively lower-''Z'' elements such as
tin,
steel
Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
, and
copper
Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
, usually ending with
aluminium
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
. Sometimes even lighter materials such as
polypropylene
Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer Propene, propylene.
Polypropylene belongs to the group of polyolefin ...
or
boron carbide
Boron carbide (chemical formula approximately B4C) is an extremely hard boron–carbon ceramic, a covalent material used in tank armor, bulletproof vests, engine sabotage powders,
as well as numerous industrial applications. With a Vickers har ...
are used.
In a typical graded-''Z'' shield, the high-''Z'' layer effectively scatters protons and electrons. It also absorbs gamma rays, which produces
X-ray fluorescence
X-ray fluorescence (XRF) is the emission of characteristic "secondary" (or fluorescent) X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis ...
. Each subsequent layer absorbs the X-ray fluorescence of the previous material, eventually reducing the energy to a suitable level. Each decrease in energy produces
Bremsstrahlung and
Auger electrons, which are below the detector's energy threshold. Some designs also include an outer layer of aluminium, which may simply be the skin of the satellite. The effectiveness of a material as a biological shield is related to its
cross-section for scattering and absorption, and to a first approximation is proportional to the total mass of material per unit area interposed along the line of sight between the radiation source and the region to be protected. Hence, shielding strength or "thickness" is conventionally measured in units of g/cm
2. The radiation that manages to get through falls exponentially with the thickness of the shield. In
x-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
facilities, walls surrounding the room with the x-ray generator may contain
lead shielding such as lead sheets, or the plaster may contain
barium sulfate
Barium sulfate (or sulphate) is the inorganic compound with the chemical formula Ba SO4. It is a white crystalline solid that is odorless and insoluble in water. It occurs in nature as the mineral barite, which is the main commercial source of ...
. Operators view the target through a
leaded glass screen, or if they must remain in the same room as the target, wear
lead aprons.
Particle radiation
Particle radiation
Particle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam.
Due to the wave–p ...
consists of a stream of charged or neutral particles, both charged ions and subatomic elementary particles. This includes
solar wind
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
,
cosmic radiation
Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Sol ...
, and
neutron flux in
nuclear reactor
A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
s.
*
Alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s (
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
nuclei) are the least penetrating. Even very energetic
alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s can be stopped by a single sheet of paper.
*
Beta particle
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β− decay and � ...
s (
electrons
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
) are more penetrating, but still can be absorbed by a few
millimetre
330px, Different lengths as in respect of the electromagnetic spectrum, measured by the metre and its derived scales. The microwave is between 1 metre to 1 millimetre.
The millimetre (American and British English spelling differences#-re, -er, i ...
s of
aluminium
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
. However, in cases where high-energy beta particles are emitted, shielding must be accomplished with low atomic weight materials, ''e.g.''
plastic
Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
,
wood
Wood is a structural tissue/material found as xylem in the stems and roots of trees and other woody plants. It is an organic materiala natural composite of cellulosic fibers that are strong in tension and embedded in a matrix of lignin t ...
,
water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
, or
acrylic glass
Poly(methyl methacrylate) (PMMA) is a synthetic polymer derived from methyl methacrylate. It is a transparent thermoplastic, used as an engineering plastic. PMMA is also known as acrylic, acrylic glass, as well as by the trade names and bran ...
(Plexiglas,
Lucite). This is to reduce generation of
Bremsstrahlung X-rays. In the case of beta+ radiation (
positron
The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
s), the gamma radiation from the
electron–positron annihilation reaction poses additional concern.
*
Neutron radiation
Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides— ...
is not as readily absorbed as charged particle radiation, which makes this type highly penetrating. In a process called
neutron activation,
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s are absorbed by
nuclei of atoms in a
nuclear reaction
In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
. This most often creates a secondary radiation hazard, as the absorbing nuclei transmute to the next-heavier isotope, many of which are unstable.
*
Cosmic radiation
Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Sol ...
is not a common concern on Earth, as the
Earth's atmosphere
The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weathe ...
absorbs it and the
magnetosphere
In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior Dynamo ...
acts as a shield, but it poses a significant problem for
satellite
A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
s and
astronaut
An astronaut (from the Ancient Greek (), meaning 'star', and (), meaning 'sailor') is a person trained, equipped, and deployed by a List of human spaceflight programs, human spaceflight program to serve as a commander or crew member of a spa ...
s, especially while passing through the
Van Allen Belt
The Van Allen radiation belt is a zone of energetic charged particles, most of which originate from the solar wind, that are captured by and held around a planet by that planet's magnetosphere. Earth has two such belts, and sometimes others ma ...
or while completely outside the protective regions of the Earth's magnetosphere. Frequent fliers may be at a slightly higher risk because of the decreased absorption from thinner atmosphere. Cosmic radiation is extremely high energy, and is very penetrating.
Electromagnetic radiation
Electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
consists of emissions of
electromagnetic wave
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ...
s, the properties of which depend on the
wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
.
*
X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
and
gamma radiation
A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
are best absorbed by
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s with heavy
nuclei; the heavier the nucleus, the better the absorption. In some special applications,
depleted uranium
Depleted uranium (DU), also referred to in the past as Q-metal, depletalloy, or D-38, is uranium with a lower content of the fissile isotope Uranium-235, 235U than natural uranium. The less radioactive and non-fissile Uranium-238, 238U is the m ...
or
thorium
Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
are used, but
lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
is much more common; several
cm are often required.
Barium sulfate
Barium sulfate (or sulphate) is the inorganic compound with the chemical formula Ba SO4. It is a white crystalline solid that is odorless and insoluble in water. It occurs in nature as the mineral barite, which is the main commercial source of ...
is used in some applications too. However, when the cost is important, almost any material can be used, but it must be far thicker. Most nuclear reactors use thick concrete shields to create a bioshield with a thin water-cooled layer of lead on the inside to protect the porous concrete from the coolant inside. The concrete is also made with heavy aggregates, such as
Baryte
Baryte, barite or barytes ( or ) is a mineral consisting of barium sulfate (Ba S O4). Baryte is generally white or colorless, and is the main source of the element barium. The ''baryte group'' consists of baryte, celestine (strontium sulfate), ...
or
Magnetite
Magnetite is a mineral and one of the main iron ores, with the chemical formula . It is one of the iron oxide, oxides of iron, and is ferrimagnetism, ferrimagnetic; it is attracted to a magnet and can be magnetization, magnetized to become a ...
, to aid in the shielding properties of the concrete. Gamma rays are better absorbed by materials with high atomic numbers and high density, although neither effect is important compared to the total mass per area in the path of the gamma ray.
*
Ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
(UV) radiation is ionizing in its shortest wavelengths but is not penetrating, so it can be shielded by thin opaque layers such as
sunscreen
Sunscreen, also known as sunblock, sun lotion or sun cream, is a photoprotection, photoprotective topical product for the Human skin, skin that helps protect against sunburn and prevent skin cancer. Sunscreens come as lotions, sprays, gels, fo ...
, clothing, and protective eyewear. Protection from UV is simpler than for the other forms of radiation above, so it is often considered separately.
In some cases, improper shielding can actually make the situation worse, when the radiation interacts with the shielding material and creates secondary radiation that absorbs in the organisms more readily. For example, although high atomic number materials are very effective in shielding
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s, using them to shield
beta particle
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β− decay and � ...
s may cause higher radiation exposure due to the production of
Bremsstrahlung x-rays, and hence low atomic number materials are recommended. Also, using a material with a high
neutron activation cross section to shield neutrons will result in the shielding material itself becoming radioactive and hence more dangerous than if it were not present.
Personal protective equipment
Personal protective equipment
Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, elect ...
(PPE) includes all clothing and accessories which can be worn to prevent severe illness and injury as a result of exposure to radioactive material. These include an SR100 (protection for 1hr), SR200 (protection for 2 hours). Because radiation can affect humans through internal and external contamination, various protection strategies have been developed to protect humans from the harmful effects of radiation exposure from a spectrum of sources. A few of these strategies developed to shield from internal, external, and high energy radiation are outlined below.
Internal contamination protective equipment
Internal contamination protection equipment protects against the inhalation and ingestion of radioactive material. Internal deposition of radioactive material result in direct exposure of radiation to organs and tissues inside the body. The respiratory protective equipment described below are designed to minimize the possibility of such material being inhaled or ingested as emergency workers are exposed to potentially radioactive environments.
Reusable air purifying respirators (APR)
* Elastic face piece worn over the mouth and nose
* Contains filters, cartridges, and canisters to provide increased protection and better filtration
Powered air-purifying respirator
A powered air-purifying respirator (PAPR) is a type of respirator used to safeguard workers against contaminated air. PAPRs consist of a headgear-and-fan assembly that takes ambient air contaminated with one or more type of pollutant or pathog ...
(PAPR)
* Battery powered blower forces contamination through air purifying filters
* Purified air delivered under positive pressure to face piece
Supplied-air respirator (SAR)
* Compressed air delivered from a stationary source to the face piece
Auxiliary escape respirator
* Protects wearer from breathing harmful gases, vapours, fumes, and dust
* Can be designed as an air-purifying escape respirator (APER) or a self-contained breathing apparatus (SCBA) type respirator
* SCBA type escape respirators have an attached source of breathing air and a hood that provides a barrier against contaminated outside air
Self-contained breathing apparatus (SCBA)
* Provides very pure, dry compressed air to full facepiece mask via a hose
* Air is exhaled to environment
* Worn when entering environments immediately dangerous to life and health (IDLH) or when information is inadequate to rule out IDLH atmosphere
External contamination protective equipment
External contamination protection equipment provides a barrier to shield radioactive material from being deposited externally on the body or clothes. The dermal protective equipment described below acts as a barrier to block radioactive material from physically touching the skin, but does not protect against externally penetrating high energy radiation.
Chemical-resistant inner suit
* Porous overall suit—Dermal protection from aerosols, dry particles, and non hazardous liquids.
* Non-porous overall suit to provide dermal protection from:
** Dry powders and solids
** Blood-borne pathogens and bio-hazards
** Chemical splashes and inorganic acid/base aerosols
** Mild liquid chemical splashes from toxics and corrosives
** Toxic industrial chemicals and materials
Level C equivalent: Bunker gear
* Firefighter protective clothing
* Flame/water resistant
* Helmet, gloves, foot gear, and hood
Level B equivalent: Non-gas-tight encapsulating suit
* Designed for environments that are immediate health risks but contain no substances that can be absorbed by skin
Level A equivalent: Totally encapsulating chemical- and vapour-protective suit
* Designed for environments that are immediate health risks and contain substances that can be absorbed by skin
External penetrating radiation
There are many solutions to shielding against low-energy radiation exposure like low-energy
X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s.
Lead shielding wear such as lead aprons can protect patients and clinicians from the potentially harmful radiation effects of day-to-day medical examinations. It is quite feasible to protect large surface areas of the body from radiation in the lower-energy spectrum because very little shielding material is required to provide the necessary protection. Recent studies show that copper shielding is far more effective than lead and is likely to replace it as the standard material for radiation shielding.
Personal shielding against more energetic radiation such as
gamma radiation
A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
is very difficult to achieve as the large mass of shielding material required to properly protect the entire body would make functional movement nearly impossible. For this, partial body shielding of radio-sensitive internal organs is the most viable protection strategy.
The immediate danger of intense exposure to high-energy gamma radiation is
acute radiation syndrome
Acute radiation syndrome (ARS), also known as radiation sickness or radiation poisoning, is a collection of health effects that are caused by being exposed to high amounts of ionizing radiation in a short period of time. Symptoms can start wit ...
(ARS), a result of irreversible bone marrow damage. The concept of selective shielding is based in the regenerative potential of the
hematopoietic stem cell
Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within the ...
s found in bone marrow. The regenerative quality of stem cells make it only necessary to protect enough bone marrow to repopulate the body with unaffected stem cells after the exposure: a similar concept which is applied in
hematopoietic stem cell transplantation
Hematopoietic stem-cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood, in order to replicate inside a patient and produce ...
(HSCT), which is a common treatment for patients with leukemia. This scientific advancement allows for the development of a new class of relatively lightweight protective equipment that shields high concentrations of bone marrow to defer the hematopoietic sub-syndrome of acute radiation syndrome to much higher dosages.
One technique is to apply selective shielding to protect the high concentration of bone marrow stored in the hips and other radio-sensitive organs in the abdominal area. This allows first responders a safe way to perform necessary missions in radioactive environments.
Radiation protection instruments
Practical radiation measurement using calibrated radiation protection instruments is essential in evaluating the effectiveness of protection measures, and in assessing the radiation dose likely to be received by individuals. The measuring instruments for radiation protection are both "installed" (in a fixed position) and portable (hand-held or transportable).
Installed instruments
Installed instruments are fixed in positions which are known to be important in assessing the general radiation hazard in an area. Examples are installed "area" radiation monitors, Gamma interlock monitors, personnel exit monitors, and airborne particulate monitors.
The area radiation monitor will measure the ambient radiation, usually X-Ray, Gamma or neutrons; these are radiations that can have significant radiation levels over a range in excess of tens of metres from their source, and thereby cover a wide area.
Gamma radiation "interlock monitors" are used in applications to prevent inadvertent exposure of workers to an excess dose by preventing personnel access to an area when a high radiation level is present. These interlock the process access directly.
Airborne contamination monitors measure the concentration of radioactive particles in the ambient air to guard against radioactive particles being ingested, or deposited in the lungs of personnel. These instruments will normally give a local alarm, but are often connected to an integrated safety system so that areas of plant can be evacuated and personnel are prevented from entering an air of high airborne contamination.
Personnel exit monitors (PEM) are used to monitor workers who are exiting a "contamination controlled" or potentially contaminated area. These can be in the form of hand monitors, clothing frisk probes, or whole body monitors. These monitor the surface of the workers body and clothing to check if any
radioactive contamination
Radioactive contamination, also called radiological pollution, is the deposition of, or presence of Radioactive decay, radioactive substances on surfaces or within solids, liquids, or gases (including the human body), where their presence is uni ...
has been deposited. These generally measure alpha or beta or gamma, or combinations of these.
The UK
National Physical Laboratory publishes a good practice guide through its Ionising Radiation Metrology Forum concerning the provision of such equipment and the methodology of calculating the alarm levels to be used.
Portable instruments

Portable instruments are hand-held or transportable. The hand-held instrument is generally used as a
survey meter
Survey meters in radiation protection are hand-held ionising radiation measurement instruments used to check such as personnel, equipment and the environment for radioactive contamination and ambient radiation. The hand-held survey meter is prob ...
to check an object or person in detail, or assess an area where no installed instrumentation exists. They can also be used for personnel exit monitoring or personnel contamination checks in the field. These generally measure alpha, beta or gamma, or combinations of these.
Transportable instruments are generally instruments that would have been permanently installed, but are temporarily placed in an area to provide continuous monitoring where it is likely there will be a hazard. Such instruments are often installed on trolleys to allow easy deployment, and are associated with temporary operational situations.
In the
United Kingdom
The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom (UK) or Britain, is a country in Northwestern Europe, off the coast of European mainland, the continental mainland. It comprises England, Scotlan ...
the
HSE has issued a user guidance note on selecting the correct radiation measurement instrument for the application concerned.
Selection, use and maintenance of portable monitoring instruments. UK HSE This covers all radiation instrument technologies, and is a useful comparative guide.
Instrument types
A number of commonly used detection instrument types are listed below, and are used for both fixed and survey monitoring.
*
ionization chamber
The ionization chamber is the simplest type of gaseous ionisation detector, and is widely used for the detection and measurement of many types of ionizing radiation, including X-rays, gamma rays, alpha particles and beta particles. Conventionall ...
s
*
proportional counter
The proportional counter is a type of gaseous ionization detector device used to measure Charged particle, particles of ionizing radiation. The key feature is its ability to measure the Electronvolt, energy of incident radiation, by producing a det ...
s
*
Geiger counter
A Geiger counter (, ; also known as a Geiger–Müller counter or G-M counter) is an electronic instrument for detecting and measuring ionizing radiation with the use of a Geiger–Müller tube. It is widely used in applications such as radiat ...
s
*
semiconductor detectors
*
scintillation detectors
*
airborne particulate radioactivity monitoring
Radiation related quantities
The following table shows the main radiation-related quantities and units.
Spacecraft radiation challenges
Spacecraft, both robotic and crewed, must cope with the high radiation environment of outer space. Radiation emitted by the Sun and
other galactic sources, and trapped in
radiation "belts" is more dangerous and hundreds of times more intense than radiation sources such as medical X-rays or normal cosmic radiation usually experienced on Earth.
When the intensely ionizing particles found in space strike human tissue, it can result in cell damage and may eventually lead to cancer.
The usual method for radiation protection is material shielding by spacecraft and equipment structures (usually aluminium), possibly augmented by polyethylene in human spaceflight where the main concern is high-energy protons and cosmic ray ions. On uncrewed spacecraft in high-electron-dose environments such as Jupiter missions, or medium Earth orbit (MEO), additional shielding with materials of a high atomic number can be effective. On long-duration crewed missions, advantage can be taken of the good shielding characteristics of liquid hydrogen fuel and water.
The
NASA Space Radiation Laboratory makes use of a particle accelerator that produces beams of protons or heavy ions. These ions are typical of those accelerated in cosmic sources and by the Sun. The beams of ions move through a 100 m (328-foot) transport tunnel to the 37 m
2 (400-square-foot) shielded target hall. There, they hit the target, which may be a biological sample or shielding material.
In a 2002 NASA study, it was determined that materials that have high hydrogen contents, such as
polyethylene
Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bott ...
, can reduce primary and secondary radiation to a greater extent than metals, such as aluminum. The problem with this "passive shielding" method is that radiation interactions in the material generate secondary radiation.
Active Shielding, that is, using magnets, high voltages, or artificial magnetospheres to slow down or deflect radiation, has been considered to potentially combat radiation in a feasible way. So far, the cost of equipment, power and weight of active shielding equipment outweigh their benefits. For example, active radiation equipment would need a habitable volume size to house it, and magnetic and electrostatic configurations often are not homogeneous in intensity, allowing high-energy particles to penetrate the magnetic and electric fields from low-intensity parts, like cusps in dipolar magnetic field of Earth. As of 2012, NASA is undergoing research in
superconducting
Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases g ...
magnetic architecture for potential active shielding applications.
Early radiation dangers

The dangers of radioactivity and radiation were not immediately recognized. The discovery of x‑rays in 1895 led to widespread experimentation by scientists, physicians, and inventors. Many people began recounting stories of burns, hair loss and worse in technical journals as early as 1896. In February of that year, Professor Daniel and Dr. Dudley of
Vanderbilt University
Vanderbilt University (informally Vandy or VU) is a private university, private research university in Nashville, Tennessee, United States. Founded in 1873, it was named in honor of shipping and railroad magnate Cornelius Vanderbilt, who provide ...
performed an experiment involving x-raying Dudley's head that resulted in his hair loss. A report by Dr. H.D. Hawks, a graduate of Columbia College, of his severe hand and chest burns in an x-ray demonstration, was the first of many other reports in ''Electrical Review''.
Many experimenters including
Elihu Thomson
Elihu Thomson (March 29, 1853 – March 13, 1937) was an English-American engineer and inventor who was instrumental in the founding of major electricity, electrical companies in the United States, the United Kingdom and France.
Early life
He ...
at
Thomas Edison
Thomas Alva Edison (February11, 1847October18, 1931) was an American inventor and businessman. He developed many devices in fields such as electric power generation, mass communication, sound recording, and motion pictures. These inventions, ...
's lab,
William J. Morton, and
Nikola Tesla
Nikola Tesla (;["Tesla"](_blank)
. ''Random House Webster's Unabridged Dictionary''. ; 10 July 1856 – 7 ...
also reported burns. Elihu Thomson deliberately exposed a finger to an x-ray tube over a period of time and experienced pain, swelling, and blistering.
Other effects, including ultraviolet rays and ozone were sometimes blamed for the damage.
Many physicists claimed that there were no effects from x-ray exposure at all.
As early as 1902
William Herbert Rollins wrote almost despairingly that his warnings about the dangers involved in careless use of x-rays was not being heeded, either by industry or by his colleagues. By this time Rollins had proved that x-rays could kill experimental animals, could cause a pregnant guinea pig to abort, and that they could kill a fetus.
He also stressed that "animals vary in susceptibility to the external action of X-light" and warned that these differences be considered when patients were treated by means of x-rays.
Before the biological effects of radiation were known, many physicists and corporations began marketing radioactive substances as
patent medicine
A patent medicine (sometimes called a proprietary medicine) is a non-prescription medicine or medicinal preparation that is typically protected and advertised by a trademark and trade name, and claimed to be effective against minor disorders a ...
in the form of glow-in-the-dark pigments. Examples were radium
enema
An enema, also known as a clyster, is the rectal administration of a fluid by injection into the Large intestine, lower bowel via the anus.Cullingworth, ''A Manual of Nursing, Medical and Surgical'':155 The word ''enema'' can also refer to the ...
treatments, and radium-containing waters to be drunk as tonics.
Marie Curie
Maria Salomea Skłodowska-Curie (; ; 7 November 1867 – 4 July 1934), known simply as Marie Curie ( ; ), was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.
She was List of female ...
protested against this sort of treatment, warning that the effects of radiation on the human body were not well understood. Curie later died from
aplastic anaemia, likely caused by exposure to ionizing radiation. By the 1930s, after a number of cases of bone necrosis and death of radium treatment enthusiasts, radium-containing medicinal products had been largely removed from the market (
radioactive quackery).
See also
*
CBLB502, 'Protectan', a radioprotectant drug under development for its ability to protect cells during
radiotherapy
Radiation therapy or radiotherapy (RT, RTx, or XRT) is a treatment using ionizing radiation, generally provided as part of cancer therapy to either kill or control the growth of malignant cells. It is normally delivered by a linear particle ...
.
*
Ex-Rad, a
United States Department of Defense
The United States Department of Defense (DoD, USDOD, or DOD) is an United States federal executive departments, executive department of the federal government of the United States, U.S. federal government charged with coordinating and superv ...
radioprotectant drug under development.
*
Health physics
Health physics, also referred to as the science of radiation protection, is the profession devoted to protecting people and their environment from potential radiation hazards, while making it possible to enjoy the beneficial uses of radiation. H ...
*
Health threat from cosmic rays
*
International Radiation Protection Association – (IRPA). The International body concerned with promoting the science and practice of radiation protection.
*
Juno Radiation Vault
*
Non-ionizing radiation
Non-ionizing (or non-ionising) radiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum ( photon energy) to ionize atoms or molecules—that is, to completely remove an electron from an atom or mol ...
*
Nuclear safety
Nuclear safety is defined by the International Atomic Energy Agency (IAEA) as "The achievement of proper operating conditions, prevention of accidents or mitigation of accident consequences, resulting in protection of workers, the public and the ...
*
Potassium iodide
*
Radiation monitoring
*
Radiation Protection Convention, 1960
Radiation protection reports of the European Union*
Radiobiology
Radiobiology (also known as radiation biology, and uncommonly as actinobiology) is a field of clinical and basic medical sciences that involves the study of the effects of radiation on living tissue (including ionizing radiation, ionizing and non- ...
*
Radiological protection of patients
*
Radioresistance
*
Society for Radiological Protection – The principal UK body concerned with promoting the science and practice of radiation protection. It is the UK national affiliated body to IRPA
*
United Nations Scientific Committee on the Effects of Atomic Radiation
References
Notes
Harvard University Radiation Protection OfficeProviding radiation guidance to Harvard University and affiliated institutions.
Journal of Solid State PhenomenaTara Ahmadi, Use of Semi-Dipole Magnetic Field for Spacecraft Radiation Protection.
External links
- "The confusing world of radiation dosimetry" - M.A. Boyd, U.S. Environmental Protection Agency. An account of chronological differences between USA and ICRP dosimetry systems.
*
{{DEFAULTSORT:Radiation Protection
Nuclear physics
Radiobiology
Radiation health effects