HOME

TheInfoList



OR:

A ribonucleoside tri-phosphate (rNTP) is composed of a
ribose Ribose is a simple sugar and carbohydrate with molecular formula C5H10O5 and the linear-form composition H−(C=O)−(CHOH)4−H. The naturally-occurring form, , is a component of the ribonucleotides from which RNA is built, and so this compo ...
sugar, 3
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosph ...
groups attached via diester bonds to the 5' oxygen on the ribose and a
nitrogenous base Nucleobases, also known as ''nitrogenous bases'' or often simply ''bases'', are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basic b ...
attached to the 1' carbon on the ribose. rNTP's are also referred to as NTPs while the deoxyribose version is referred to as dNTPs. The nitrogenous base can either be a
purine Purine is a heterocyclic aromatic organic compound that consists of two rings ( pyrimidine and imidazole) fused together. It is water-soluble. Purine also gives its name to the wider class of molecules, purines, which include substituted purines ...
such as a Adenine or Guanine or a pyrimidine such as a Uracil or Cytosine. rNTPs have significant biological uses, they can serve as building blocks of
RNA synthesis Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins are said to produce messenger RNA (mRNA). Other segments of DNA are copied into RNA molecules called ...
, primers in
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
, stores of chemical energy, chiefly
Adenosine triphosphate Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms o ...
(ATP) and more.


Comparison with dNTP

Concentration of rNTPs within the cell is 10 to 106 times higher than the concentration of dNTP. Thus, during DNA replication the higher concentration of rNTP poses a problem as it can be erroneously incorporated into the developing DNA strand by DNA polymerases. The usage of RNA primers during DNA replication is an example of a correct incorporation of rNTPs during the process. Although, overly long RNA primers can decrease the effectiveness of T7 DNA polymerase in incorporating dNTP into the growing strand and weaken the binding between T7 and the template DNA strand. Essentially as the RNA primer grows, these rNMP residues inhibit RNA synthesis, decrease dNTP incorporation efficiency, decrease affinity between the helicase, DNA polymerase and template DNA strand overall decreases productivity of the DNA-protein complex. rNMPs are rNTPs without a pyrophosphate group attached, 2 Pi. However, DNA polymerases have a method to prevent rNTP incorporation centered around the major distinguishing feature between ribose and deoxyribose sugar bases, that feature being the absence of a 2'-OH on the deoxyribose. The use of a steric gate residue present on the DNA polymerase prevents incorporation of rNTP by creating a steric clash between an active site amino acid residue on the DNA polymerase and the 2'-OH on the sugar base of the rNTP. This steric clash is absent when incorporating dNTP since the sugar base on dNTPs have a 2'-H instead of a 2'-OH. Specifically the amino acid tyrosine positioned at residue 416 in DNA polymerase serves as the steric residue gate to prevent rNTP incorporation while in RNA polymerase the presence of a stabilizing electrostatic interaction between the 2'-OH on the ribose allows for correct incorporation into a growing RNA strand as opposed to dNTP incorporation. The results obtained from using changes in the free energy of the transition state of T7 DNA polymerase and RNA polymerase when binding to either dNTP or rNTP substrates support the above method of discriminating between rNTP and dNTP during their respective biological procedures. The presence of correct water binding during dNTP or rNTP incorporation is also necessary. However, a specific human DNA polymerase known as DNA polymerase η incorporates rNTPs into the developing DNA strand at points in which the template strand has lesions or is damaged. DNA polymerase η ensures that the rNTP being incorporated is complementary to the DNA residue of the template strand based on Watson and Crick base pairing rules. It overcomes the steric interference with the steric gate residue via propeller twist of to allow enough space for the 2'-OH. Incorporation of the appropriate rNTP into the developing DNA strand allows for corrections to be done on segments of the DNA that are damaged or have lesions.


References

RNA {{Biochem-stub