HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a quotient category is a
category Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...
obtained from another one by identifying sets of
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
s. Formally, it is a
quotient object In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory,M ...
in the category of (locally small) categories, analogous to a
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For examp ...
or quotient space, but in the categorical setting.


Definition

Let ''C'' be a category. A ''
congruence relation In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done wi ...
'' ''R'' on ''C'' is given by: for each pair of objects ''X'', ''Y'' in ''C'', an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
''R''''X'',''Y'' on Hom(''X'',''Y''), such that the equivalence relations respect composition of morphisms. That is, if :f_1,f_2 : X \to Y\, are related in Hom(''X'', ''Y'') and :g_1,g_2 : Y \to Z\, are related in Hom(''Y'', ''Z''), then ''g''1''f''1 and ''g''2''f''2 are related in Hom(''X'', ''Z''). Given a congruence relation ''R'' on ''C'' we can define the quotient category ''C''/''R'' as the category whose objects are those of ''C'' and whose morphisms are
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
es of morphisms in ''C''. That is, :\mathrm_(X,Y) = \mathrm_(X,Y)/R_. Composition of morphisms in ''C''/''R'' is
well-defined In mathematics, a well-defined expression or unambiguous expression is an expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be ''not well defined'', ill defined or ''ambiguous''. A funct ...
since ''R'' is a congruence relation.


Properties

There is a natural quotient
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
from ''C'' to ''C''/''R'' which sends each morphism to its equivalence class. This functor is bijective on objects and surjective on Hom-sets (i.e. it is a
full functor In category theory, a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a full and faithful functor. Formal definitions Explicitly, let ''C'' an ...
). Every functor ''F'' : ''C'' → ''D'' determines a congruence on ''C'' by saying ''f'' ~ ''g''
iff In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicon ...
''F''(''f'') = ''F''(''g''). The functor ''F'' then factors through the quotient functor ''C'' → ''C''/~ in a unique manner. This may be regarded as the "
first isomorphism theorem In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist f ...
" for categories.


Examples

*
Monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids ...
s and
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
s may be regarded as categories with one object. In this case the quotient category coincides with the notion of a
quotient monoid In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy ...
or a
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For examp ...
. * The
homotopy category of topological spaces In mathematics, the homotopy category is a category (mathematics), category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) cat ...
hTop is a quotient category of Top, the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again contin ...
. The equivalence classes of morphisms are
homotopy class In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deforma ...
es of continuous maps. *Let ''k'' be a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
and consider the
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of ab ...
Mod(''k'') of all
vector spaces In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
over ''k'' with ''k''-linear maps as morphisms. To "kill" all finite-dimensional spaces, we can call two linear maps ''f'',''g'' : ''X'' → ''Y'' congruent iff their difference has finite-dimensional image. In the resulting quotient category, all finite-dimensional vector spaces are isomorphic to 0. his is actually an example of a quotient of additive categories, see below.


Related concepts


Quotients of additive categories modulo ideals

If ''C'' is an additive category and we require the congruence relation ~ on ''C'' to be additive (i.e. if ''f''1, ''f''2, ''g''1 and ''g''2 are morphisms from ''X'' to ''Y'' with ''f''1 ~ ''f''2 and ''g''1 ~''g''2, then ''f''1 + ''g''1 ~ ''f''2 + ''g''2), then the quotient category ''C''/~ will also be additive, and the quotient functor ''C'' → ''C''/~ will be an additive functor. The concept of an additive congruence relation is equivalent to the concept of a ''two-sided ideal of morphisms'': for any two objects ''X'' and ''Y'' we are given an additive subgroup ''I''(''X'',''Y'') of Hom''C''(''X'', ''Y'') such that for all ''f'' ∈ ''I''(''X'',''Y''), ''g'' ∈ Hom''C''(''Y'', ''Z'') and ''h''∈ Hom''C''(''W'', ''X''), we have ''gf'' ∈ ''I''(''X'',''Z'') and ''fh'' ∈ ''I''(''W'',''Y''). Two morphisms in Hom''C''(''X'', ''Y'') are congruent iff their difference is in ''I''(''X'',''Y''). Every unital
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
may be viewed as an additive category with a single object, and the quotient of additive categories defined above coincides in this case with the notion of a
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
modulo a two-sided ideal.


Localization of a category

The
localization of a category In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in gene ...
introduces new morphisms to turn several of the original category's morphisms into isomorphisms. This tends to increase the number of morphisms between objects, rather than decrease it as in the case of quotient categories. But in both constructions it often happens that two objects become isomorphic that weren't isomorphic in the original category.


Serre quotients of abelian categories

The Serre quotient of an
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of ab ...
by a
Serre subcategory In mathematics, Serre and localizing subcategories form important classes of subcategories of an abelian category. Localizing subcategories are certain Serre subcategories. They are strongly linked to the notion of a quotient category. Serre subca ...
is a new abelian category which is similar to a quotient category but also in many cases has the character of a localization of the category.


References

* {{Category theory Category theory
Category Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...