HOME
*





Well-defined
In mathematics, a well-defined expression or unambiguous expression is an expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be ''not well defined'', ill defined or ''ambiguous''. A function is well defined if it gives the same result when the representation of the input is changed without changing the value of the input. For instance, if ''f'' takes real numbers as input, and if ''f''(0.5) does not equal ''f''(1/2) then ''f'' is not well defined (and thus not a function). The term ''well defined'' can also be used to indicate that a logical expression is unambiguous or uncontradictory. A function that is not well defined is not the same as a function that is undefined. For example, if ''f''(''x'') = 1/''x'', then the fact that ''f''(0) is undefined does not mean that the ''f'' is ''not'' well defined – but that 0 is simply not in the domain of ''f''. Example Let A_0,A_1 be sets, let A = A_0 \cup A_1 and "define" f: A \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Undefined (mathematics)
In mathematics, the term undefined is often used to refer to an expression which is not assigned an interpretation or a value (such as an indeterminate form, which has the propensity of assuming different values). The term can take on several different meanings depending on the context. For example: * In various branches of mathematics, certain concepts are introduced as primitive notions (e.g., the terms "point", "line" and "angle" in geometry). As these terms are not defined in terms of other concepts, they may be referred to as "undefined terms". * A function is said to be "undefined" at points outside of its domainfor example, the real-valued function f(x)=\sqrt is undefined for negative x (i.e., it assigns no value to negative arguments). * In algebra, some arithmetic operations may not assign a meaning to certain values of its operands (e.g., division by zero). In which case, the expressions involving such operands are termed "undefined". Undefined terms In ancient tim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Undefined (mathematics)
In mathematics, the term undefined is often used to refer to an expression which is not assigned an interpretation or a value (such as an indeterminate form, which has the propensity of assuming different values). The term can take on several different meanings depending on the context. For example: * In various branches of mathematics, certain concepts are introduced as primitive notions (e.g., the terms "point", "line" and "angle" in geometry). As these terms are not defined in terms of other concepts, they may be referred to as "undefined terms". * A function is said to be "undefined" at points outside of its domainfor example, the real-valued function f(x)=\sqrt is undefined for negative x (i.e., it assigns no value to negative arguments). * In algebra, some arithmetic operations may not assign a meaning to certain values of its operands (e.g., division by zero). In which case, the expressions involving such operands are termed "undefined". Undefined terms In ancient tim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniqueness
Uniqueness is a state or condition wherein someone or something is unlike anything else in comparison, or is remarkable, or unusual. When used in relation to humans, it is often in relation to a person's personality, or some specific characteristics of it, signalling that it is unlike the personality traits that are prevalent in that individual's culture. When the term ''uniqueness'' is used in relation to an object, it is often within the realm of product, with the term being a factor used to publicize or market the product in order to make it stand out from other products within the same category. The notion of American exceptionalism is premised on the uniqueness of the West, particularly its well-defined secularism. See also *Loner *Scarcity In economics, scarcity "refers to the basic fact of life that there exists only a finite amount of human and nonhuman resources which the best technical knowledge is capable of using to produce only limited maximum amounts of each eco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representative (mathematics)
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \,\sim\, on S, the of an element a in S, denoted by is the set \ of elements which are equivalent to a. It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of S. This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of S by \,\sim\,, and is denoted by S / \sim. When the set S has some structure (such as a group operation or a topology) and the equivalence relation \,\sim\, is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Definitionism
Definitionism (also called the classical theory of concepts) is the school of thought in which it is believed that a proper explanation of a theory consists of all the concepts used by that theory being well-defined. This approach has been criticized for its dismissal of the importance of ostensive definition An ostensive definition conveys the meaning of a term by pointing out examples. This type of definition is often used where the term is difficult to define verbally, either because the words will not be understood (as with children and new speaker ...s. References Definition Metaphysical theories Metatheory Concepts {{metaphysics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operation (mathematics)
In mathematics, an operation is a function which takes zero or more input values (also called "''operands''" or "arguments") to a well-defined output value. The number of operands is the arity of the operation. The most commonly studied operations are binary operations (i.e., operations of arity 2), such as addition and multiplication, and unary operations (i.e., operations of arity 1), such as additive inverse and multiplicative inverse. An operation of arity zero, or nullary operation, is a constant. The mixed product is an example of an operation of arity 3, also called ternary operation. Generally, the arity is taken to be finite. However, infinitary operations are sometimes considered, in which case the "usual" operations of finite arity are called finitary operations. A partial operation is defined similarly to an operation, but with a partial function in place of a function. Types of operation There are two common types of operations: unary and binar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Precedence
In mathematics and computer programming, the order of operations (or operator precedence) is a collection of rules that reflect conventions about which procedures to perform first in order to evaluate a given mathematical expression. For example, in mathematics and most computer languages, multiplication is granted a higher precedence than addition, and it has been this way since the introduction of modern algebraic notation. Thus, the expression is interpreted to have the value , and not . When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication, and could be placed only as a superscript to the right of their base. Thus and . These conventions exist to eliminate notational ambiguity, while allowing notation to be as brief as possible. Where it is desired to override the precedence conventions, or even simply to emphasize them, parentheses ( ) can be used. For example, forces addition to precede multiplic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-formed Formula
In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be identified with the set of formulas in the language. A formula is a syntactic object that can be given a semantic meaning by means of an interpretation. Two key uses of formulas are in propositional logic and predicate logic. Introduction A key use of formulas is in propositional logic and predicate logic such as first-order logic. In those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", once any free variables in φ have been instantiated. In formal logic, proofs can be represented by sequences of formulas with certain properties, and the final formula in the sequence is what is proven. Although the term "formula" may be used for written marks (for instance, on a piece of paper or ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniqueness Quantification
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols " ∃!" or "∃=1". For example, the formal statement : \exists! n \in \mathbb\,(n - 2 = 4) may be read as "there is exactly one natural number n such that n - 2 =4". Proving uniqueness The most common technique to prove the unique existence of a certain object is to first prove the existence of the entity with the desired condition, and then to prove that any two such entities (say, ''a'' and ''b'') must be equal to each other (i.e. a = b). For example, to show that the equation x + 2 = 5 has exactly one solution, one would first start by establishing that at least one solution exists, namely 3; the proof of this part is simply the verification that the equation below holds: : 3 + 2 = 5. To ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Existence
Existence is the ability of an entity to interact with reality. In philosophy, it refers to the ontology, ontological Property (philosophy), property of being. Etymology The term ''existence'' comes from Old French ''existence'', from Medieval Latin ''existentia/exsistentia'', from Latin ''existere'', to come forth, be manifest, ''ex + sistere'', to stand. Context in philosophy Materialism holds that the only things that exist are matter and energy, that all things are composed of material, that all actions require energy, and that all phenomena (including consciousness) are the result of the interaction of matter. Dialectical materialism does not make a distinction between being and existence, and defines it as the objective reality of various forms of matter. Idealism holds that the only things that exist are thoughts and ideas, while the material world is secondary. In idealism, existence is sometimes contrasted with Transcendence (philosophy), transcendence, the ability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to Numerical methods for partial differential equations, numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematics, pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]