HOME

TheInfoList



OR:

Quicksort is an efficient, general-purpose
sorting algorithm In computer science, a sorting algorithm is an algorithm that puts elements of a List (computing), list into an Total order, order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. ...
. Quicksort was developed by British computer scientist
Tony Hoare Sir Charles Antony Richard Hoare (Tony Hoare or C. A. R. Hoare) (born 11 January 1934) is a British computer scientist who has made foundational contributions to programming languages, algorithms, operating systems, formal verification, and c ...
in 1959 and published in 1961, it is still a commonly used algorithm for sorting. Overall, it is slightly faster than
merge sort In computer science, merge sort (also commonly spelled as mergesort) is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the order of equal elements is the same i ...
and
heapsort In computer science, heapsort is a comparison-based sorting algorithm. Heapsort can be thought of as an improved selection sort: like selection sort, heapsort divides its input into a sorted and an unsorted region, and it iteratively shrinks the ...
for randomized data, particularly on larger distributions. Quicksort is a
divide-and-conquer algorithm In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved dire ...
. It works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. For this reason, it is sometimes called partition-exchange sort. The sub-arrays are then sorted
recursively Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics ...
. This can be done
in-place In computer science, an in-place algorithm is an algorithm which transforms input using no auxiliary data structure. However, a small amount of extra storage space is allowed for auxiliary variables. The input is usually overwritten by the output ...
, requiring small additional amounts of
memory Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, ...
to perform the sorting. Quicksort is a
comparison sort A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occ ...
, meaning that it can sort items of any type for which a "less-than" relation (formally, a
total order In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive) ...
) is defined. Most implementations of quicksort are not
stable A stable is a building in which livestock, especially horses, are kept. It most commonly means a building that is divided into separate stalls for individual animals and livestock. There are many different types of stables in use today; the ...
, meaning that the relative order of equal sort items is not preserved.
Mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
of quicksort shows that, on average, the algorithm takes O(n \log) comparisons to sort ''n'' items. In the
worst case In computer science, best, worst, and average cases of a given algorithm express what the resource usage is ''at least'', ''at most'' and ''on average'', respectively. Usually the resource being considered is running time, i.e. time complexity, b ...
, it makes O(n^2) comparisons.


History

The quicksort algorithm was developed in 1959 by
Tony Hoare Sir Charles Antony Richard Hoare (Tony Hoare or C. A. R. Hoare) (born 11 January 1934) is a British computer scientist who has made foundational contributions to programming languages, algorithms, operating systems, formal verification, and c ...
while he was a visiting student at
Moscow State University M. V. Lomonosov Moscow State University (MSU; russian: Московский государственный университет имени М. В. Ломоносова) is a public research university in Moscow, Russia and the most prestigious ...
. At that time, Hoare was working on a
machine translation Machine translation, sometimes referred to by the abbreviation MT (not to be confused with computer-aided translation, machine-aided human translation or interactive translation), is a sub-field of computational linguistics that investigates t ...
project for the National Physical Laboratory. As a part of the translation process, he needed to sort the words in Russian sentences before looking them up in a Russian-English dictionary, which was in alphabetical order on
magnetic tape Magnetic tape is a medium for magnetic storage made of a thin, magnetizable coating on a long, narrow strip of plastic film. It was developed in Germany in 1928, based on the earlier magnetic wire recording from Denmark. Devices that use magne ...
. After recognizing that his first idea,
insertion sort Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time by comparisons. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. Howev ...
, would be slow, he came up with a new idea. He wrote the partition part in Mercury
Autocode Autocode is the name of a family of "simplified coding systems", later called programming languages, devised in the 1950s and 1960s for a series of digital computers at the Universities of Manchester, Cambridge and London. Autocode was a generic ...
but had trouble dealing with the list of unsorted segments. On return to England, he was asked to write code for
Shellsort Shellsort, also known as Shell sort or Shell's method, is an in-place comparison sort. It can be seen as either a generalization of sorting by exchange ( bubble sort) or sorting by insertion (insertion sort). The method starts by sorting pairs o ...
. Hoare mentioned to his boss that he knew of a faster algorithm and his boss bet sixpence that he did not. His boss ultimately accepted that he had lost the bet. Later, Hoare learned about
ALGOL ALGOL (; short for "Algorithmic Language") is a family of imperative computer programming languages originally developed in 1958. ALGOL heavily influenced many other languages and was the standard method for algorithm description used by the ...
and its ability to do recursion that enabled him to publish the code in '' Communications of the Association for Computing Machinery'', the premier computer science journal of the time. Quicksort gained widespread adoption, appearing, for example, in
Unix Unix (; trademarked as UNIX) is a family of multitasking, multiuser computer operating systems that derive from the original AT&T Unix, whose development started in 1969 at the Bell Labs research center by Ken Thompson, Dennis Ritchie, and ot ...
as the default library sort subroutine. Hence, it lent its name to the
C standard library The C standard library or libc is the standard library for the C programming language, as specified in the ISO C standard.ISO/IEC (2018). '' ISO/IEC 9899:2018(E): Programming Languages - C §7'' Starting from the original ANSI C standard, it wa ...
subroutine and in the reference implementation of
Java Java (; id, Jawa, ; jv, ꦗꦮ; su, ) is one of the Greater Sunda Islands in Indonesia. It is bordered by the Indian Ocean to the south and the Java Sea to the north. With a population of 151.6 million people, Java is the world's List ...
. Robert Sedgewick's PhD thesis in 1975 is considered a milestone in the study of Quicksort where he resolved many open problems related to the analysis of various pivot selection schemes including
Samplesort Samplesort is a sorting algorithm that is a divide and conquer algorithm often used in parallel processing systems. Conventional divide and conquer sorting algorithms partitions the array into sub-intervals or buckets. The buckets are then sorted in ...
, adaptive partitioning by Van Emden as well as derivation of expected number of comparisons and swaps. Jon Bentley and
Doug McIlroy Malcolm Douglas McIlroy (born 1932) is a mathematician, engineer, and programmer. As of 2019 he is an Adjunct Professor of Computer Science at Dartmouth College. McIlroy is best known for having originally proposed Unix pipelines and developed s ...
in 1993 incorporated various improvements for use in programming libraries, including a technique to deal with equal elements and a pivot scheme known as ''pseudomedian of nine,'' where a sample of nine elements is divided into groups of three and then the median of the three medians from three groups is chosen. Bentley described another simpler and compact partitioning scheme in his book ''Programming Pearls'' that he attributed to Nico Lomuto. Later Bentley wrote that he used Hoare's version for years but never really understood it but Lomuto's version was simple enough to prove correct. Bentley described Quicksort as the "most beautiful code I had ever written" in the same essay. Lomuto's partition scheme was also popularized by the textbook ''
Introduction to Algorithms ''Introduction to Algorithms'' is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The book has been widely used as the textbook for algorithms courses at many universities and is co ...
'' although it is inferior to Hoare's scheme because it does three times more swaps on average and degrades to runtime when all elements are equal. McIlroy would further produce an''AntiQuicksort'' () function in 1998, which consistently drives even his 1993 variant of Quicksort into quadratic behavior by producing adversarial data on-the-fly.


Algorithm

Quicksort is a type of
divide and conquer algorithm In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved dire ...
for sorting an array, based on a partitioning routine; the details of this partitioning can vary somewhat, so that quicksort is really a family of closely related algorithms. Applied to a range of at least two elements, partitioning produces a division into two consecutive non empty sub-ranges, in such a way that no element of the first sub-range is greater than any element of the second sub-range. After applying this partition, quicksort then recursively sorts the sub-ranges, possibly after excluding from them an element at the point of division that is at this point known to be already in its final location. Due to its recursive nature, quicksort (like the partition routine) has to be formulated so as to be callable for a range within a larger array, even if the ultimate goal is to sort a complete array. The steps for
in-place In computer science, an in-place algorithm is an algorithm which transforms input using no auxiliary data structure. However, a small amount of extra storage space is allowed for auxiliary variables. The input is usually overwritten by the output ...
quicksort are: # If the range has fewer than two elements, return immediately as there is nothing to do. Possibly for other very short lengths a special-purpose sorting method is applied and the remainder of these steps skipped. # Otherwise pick a value, called a ''pivot'', that occurs in the range (the precise manner of choosing depends on the partition routine, and can involve randomness). # ''Partition'' the range: reorder its elements, while determining a point of division, so that all elements with values less than the pivot come before the division, while all elements with values greater than the pivot come after it; elements that are equal to the pivot can go either way. Since at least one instance of the pivot is present, most partition routines ensure that the value that ends up at the point of division is equal to the pivot, and is now in its final position (but termination of quicksort does not depend on this, as long as sub-ranges strictly smaller than the original are produced). #
Recursively Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics ...
apply the quicksort to the sub-range up to the point of division and to the sub-range after it, possibly excluding from both ranges the element equal to the pivot at the point of division. (If the partition produces a possibly larger sub-range near the boundary where all elements are known to be equal to the pivot, these can be excluded as well.) The choice of partition routine (including the pivot selection) and other details not entirely specified above can affect the algorithm's performance, possibly to a great extent for specific input arrays. In discussing the efficiency of quicksort, it is therefore necessary to specify these choices first. Here we mention two specific partition methods.


Lomuto partition scheme

This scheme is attributed to Nico Lomuto and popularized by Bentley in his book ''Programming Pearls'' and Cormen ''et al.'' in their book ''
Introduction to Algorithms ''Introduction to Algorithms'' is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The book has been widely used as the textbook for algorithms courses at many universities and is co ...
''. In most formulations this scheme chooses as the pivot the last element in the array. The algorithm maintains index as it scans the array using another index such that the elements at through (inclusive) are less than the pivot, and the elements at through (inclusive) are equal to or greater than the pivot. As this scheme is more compact and easy to understand, it is frequently used in introductory material, although it is less efficient than Hoare's original scheme e.g., when all elements are equal. The complexity of Quicksort with this scheme degrades to when the array is already in order, due to the partition being the worst possible one. There have been various variants proposed to boost performance including various ways to select the pivot, deal with equal elements, use other sorting algorithms such as
insertion sort Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time by comparisons. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. Howev ...
for small arrays, and so on. In
pseudocode In computer science, pseudocode is a plain language description of the steps in an algorithm or another system. Pseudocode often uses structural conventions of a normal programming language, but is intended for human reading rather than machine re ...
, a quicksort that sorts elements at through (inclusive) of an array can be expressed as: ''// Sorts a (portion of an) array, divides it into partitions, then sorts those'' algorithm quicksort(A, lo, hi) is ''// Ensure indices are in correct order'' if lo >= hi , , lo < 0 then return ''// Partition array and get the pivot index'' p := partition(A, lo, hi) ''// Sort the two partitions'' quicksort(A, lo, p - 1) ''// Left side of pivot'' quicksort(A, p + 1, hi) ''// Right side of pivot'' ''// Divides array into two partitions'' algorithm partition(A, lo, hi) is pivot := A i''// Choose the last element as the pivot'' ''// Temporary pivot index'' i := lo - 1 for j := lo to hi - 1 do ''// If the current element is less than or equal to the pivot'' if A <= pivot then ''// Move the temporary pivot index forward'' i := i + 1 ''// Swap the current element with the element at the temporary pivot index'' swap A with A ''// Move the pivot element to the correct pivot position (between the smaller and larger elements)'' i := i + 1 swap A with A i return i ''// the pivot index'' Sorting the entire array is accomplished by .


Hoare partition scheme

The original partition scheme described by
Tony Hoare Sir Charles Antony Richard Hoare (Tony Hoare or C. A. R. Hoare) (born 11 January 1934) is a British computer scientist who has made foundational contributions to programming languages, algorithms, operating systems, formal verification, and c ...
uses two pointers (indices into the range) that start at both ends of the array being partitioned, then move toward each other, until they detect an inversion: a pair of elements, one greater than the bound (Hoare's terms for the pivot value) at the first pointer, and one less than the bound at the second pointer; if at this point the first pointer is still before the second, these elements are in the wrong order relative to each other, and they are then exchanged. After this the pointers are moved inwards, and the search for an inversion is repeated; when eventually the pointers cross (the first points after the second), no exchange is performed; a valid partition is found, with the point of division between the crossed pointers (any entries that might be strictly between the crossed pointers are equal to the pivot and can be excluded from both sub-ranges formed). With this formulation it is possible that one sub-range turns out to be the whole original range, which would prevent the algorithm from advancing. Hoare therefore stipulates that at the end, the sub-range containing the pivot element (which still is at its original position) can be decreased in size by excluding that pivot, after (if necessary) exchanging it with the sub-range element closest to the separation; thus, termination of quicksort is ensured. With respect to this original description, implementations often make minor but important variations. Notably, the scheme as presented below includes elements equal to the pivot among the candidates for an inversion (so "greater than or equal" and "less than or equal" tests are used instead of "greater than" and "less than" respectively; since the formulation uses which is actually reflected by the use of strict comparison operators). While there is no reason to exchange elements equal to the bound, this change allows tests on the pointers themselves to be omitted, which are otherwise needed to ensure they do not run out of range. Indeed, since at least one instance of the pivot value is present in the range, the first advancement of either pointer cannot pass across this instance if an inclusive test is used; once an exchange is performed, these exchanged elements are now both strictly ahead of the pointer that found them, preventing that pointer from running off. (The latter is true independently of the test used, so it would be possible to use the inclusive test only when looking for the first inversion. However, using an inclusive test throughout also ensures that a division near the middle is found when all elements in the range are equal, which gives an important efficiency gain for sorting arrays with many equal elements.) The risk of producing a non-advancing separation is avoided in a different manner than described by Hoare. Such a separation can only result when no inversions are found, with both pointers advancing to the pivot element at the first iteration (they are then considered to have crossed, and no exchange takes place). The division returned is after the final position of the second pointer, so the case to avoid is where the pivot is the final element of the range and all others are smaller than it. Therefore, the pivot choice must avoid the final element (in Hoare's description it could be any element in the range); this is done here by rounding ''down'' the middle position, using the floor function. This illustrates that the argument for correctness of an implementation of the Hoare partition scheme can be subtle, and it is easy to get it wrong. In
pseudocode In computer science, pseudocode is a plain language description of the steps in an algorithm or another system. Pseudocode often uses structural conventions of a normal programming language, but is intended for human reading rather than machine re ...
, ''// Sorts a (portion of an) array, divides it into partitions, then sorts those'' algorithm quicksort(A, lo, hi) is if lo >= 0 && hi >= 0 && lo < hi then p := partition(A, lo, hi) quicksort(A, lo, p) // Note: the pivot is now included quicksort(A, p + 1, hi) ''// Divides array into two partitions'' algorithm partition(A, lo, hi) is ''// Pivot value'' pivot := A floor((hi + lo) / 2) ''// The value in the middle of the array'' ''// Left index'' i := lo - 1 ''// Right index'' j := hi + 1 loop forever ''// Move the left index to the right at least once and while the element at'' ''// the left index is less than the pivot'' do i := i + 1 while A < pivot ''// Move the right index to the left at least once and while the element at'' ''// the right index is greater than the pivot'' do j := j - 1 while A > pivot ''// If the indices crossed, return'' if i >= j then return j ''// Swap the elements at the left and right indices'' swap A with A The entire array is sorted by . Hoare's scheme is more efficient than Lomuto's partition scheme because it does three times fewer swaps on average. Also, as mentioned, the implementation given creates a balanced partition even when all values are equal., which Lomuto's scheme does not. Like Lomuto's partition scheme, Hoare's partitioning also would cause Quicksort to degrade to for already sorted input, if the pivot was chosen as the first or the last element. With the middle element as the pivot, however, sorted data results with (almost) no swaps in equally sized partitions leading to best case behavior of Quicksort, i.e. . Like others, Hoare's partitioning doesn't produce a stable sort. In this scheme, the pivot's final location is not necessarily at the index that is returned, as the pivot and elements equal to the pivot can end up anywhere within the partition after a partition step, and may not be sorted until the base case of a partition with a single element is reached via recursion. The next two segments that the main algorithm recurs on are (elements ≤ pivot) and (elements ≥ pivot) as opposed to and as in Lomuto's scheme. Subsequent recursions (expansion on previous paragraph) Let's expand a little bit on the next two segments that the main algorithm recurs on. Because we are using strict comparators (>, <) in the loops to prevent ourselves from running out of range, there's a chance that the pivot itself gets swapped with other elements in the partition function. Therefore, the index returned in the partition function isn't necessarily where the actual pivot is. Consider the example of , following the scheme, after the first partition the array becomes , the "index" returned is 2, which is the number 1, when the real pivot, the one we chose to start the partition with was the number 3. With this example, we see how it is necessary to include the returned index of the partition function in our subsequent recursions. As a result, we are presented with the choices of either recursing on and , or and . Which of the two options we choose depends on which index (i or j) we return in the partition function when the indices cross, and how we choose our pivot in the partition function (floor v.s. ceiling). Let's first examine the choice of recursing on and , with the example of sorting an array where multiple identical elements exist . If index i (the "latter" index) is returned after indices cross in the partition function, the index 1 would be returned after the first partition. The subsequent recursion on would be on (0, 1), which corresponds to the exact same array . A non-advancing separation that causes infinite recursion is produced. It is therefore obvious that when recursing on and , because the left half of the recursion includes the returned index, it is the partition function's job to exclude the "tail" in non-advancing scenarios. Which is to say, index j (the "former" index when indices cross) should be returned instead of i. Going with a similar logic, when considering the example of an already sorted array , the choice of pivot needs to be "floor" to ensure that the pointers stop on the "former" instead of the "latter" (with "ceiling" as the pivot, the index 1 would be returned and included in causing infinite recursion). It is for the exact same reason why choice of the last element as pivot must be avoided. The choice of recursing on and follows the exact same logic as above. Because the right half of the recursion includes the returned index, it is the partition function's job to exclude the "head" in non-advancing scenarios. The index i (the "latter" index after the indices cross) in the partition function needs to be returned, and "ceiling" needs to be chosen as the pivot. The two nuances are clear, again, when considering the examples of sorting an array where multiple identical elements exist (), and an already sorted array respectively. It is noteworthy that with version of recursion, for the same reason, choice of the first element as pivot must be avoided.


Implementation issues


Choice of pivot

In the very early versions of quicksort, the leftmost element of the partition would often be chosen as the pivot element. Unfortunately, this causes worst-case behavior on already sorted arrays, which is a rather common use-case. The problem was easily solved by choosing either a random index for the pivot, choosing the middle index of the partition or (especially for longer partitions) choosing the
median In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic fe ...
of the first, middle and last element of the partition for the pivot (as recommended by Sedgewick). This "median-of-three" rule counters the case of sorted (or reverse-sorted) input, and gives a better estimate of the optimal pivot (the true median) than selecting any single element, when no information about the ordering of the input is known. Median-of-three code snippet for Lomuto partition: mid := ⌊(lo + hi) / 2⌋ if A id< A o swap A owith A id if A i< A o swap A owith A i if A id< A i swap A idwith A i pivot := A iIt puts a median into A i/code> first, then that new value of A i/code> is used for a pivot, as in a basic algorithm presented above. Specifically, the expected number of comparisons needed to sort elements (see ) with random pivot selection is . Median-of-three pivoting brings this down to , at the expense of a three-percent increase in the expected number of swaps. An even stronger pivoting rule, for larger arrays, is to pick the ninther, a recursive median-of-three (Mo3), defined as : Selecting a pivot element is also complicated by the existence of
integer overflow In computer programming, an integer overflow occurs when an arithmetic operation attempts to create a numeric value that is outside of the range that can be represented with a given number of digits – either higher than the maximum or lower t ...
. If the boundary indices of the subarray being sorted are sufficiently large, the naïve expression for the middle index, , will cause overflow and provide an invalid pivot index. This can be overcome by using, for example, to index the middle element, at the cost of more complex arithmetic. Similar issues arise in some other methods of selecting the pivot element.


Repeated elements

With a partitioning algorithm such as the Lomuto partition scheme described above (even one that chooses good pivot values), quicksort exhibits poor performance for inputs that contain many repeated elements. The problem is clearly apparent when all the input elements are equal: at each recursion, the left partition is empty (no input values are less than the pivot), and the right partition has only decreased by one element (the pivot is removed). Consequently, the Lomuto partition scheme takes
quadratic time In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by t ...
to sort an array of equal values. However, with a partitioning algorithm such as the Hoare partition scheme, repeated elements generally results in better partitioning, and although needless swaps of elements equal to the pivot may occur, the running time generally decreases as the number of repeated elements increases (with memory cache reducing the swap overhead). In the case where all elements are equal, Hoare partition scheme needlessly swaps elements, but the partitioning itself is best case, as noted in the Hoare partition section above. To solve the Lomuto partition scheme problem (sometimes called the
Dutch national flag problem The Dutch national flag problem is a computational problem proposed by Edsger Dijkstra.In a chapter of his book ''A Discipline of Programming'' Prentice-Hall, 1976 The flag of the Netherlands consists of three colors: red, white, and blue. Given ...
), an alternative linear-time partition routine can be used that separates the values into three groups: values less than the pivot, values equal to the pivot, and values greater than the pivot. (Bentley and McIlroy call this a "fat partition" and it was already implemented in the of
Version 7 Unix Seventh Edition Unix, also called Version 7 Unix, Version 7 or just V7, was an important early release of the Unix operating system. V7, released in 1979, was the last Bell Laboratories release to see widespread distribution before the commercial ...
.) The values equal to the pivot are already sorted, so only the less-than and greater-than partitions need to be recursively sorted. In pseudocode, the quicksort algorithm becomes algorithm quicksort(A, lo, hi) is if lo < hi then p := pivot(A, lo, hi) left, right := partition(A, p, lo, hi) ''// note: multiple return values'' quicksort(A, lo, left - 1) quicksort(A, right + 1, hi) The partition algorithm returns indices to the first ('leftmost') and to the last ('rightmost') item of the middle partition. Every item of the partition is equal to p and is therefore sorted. Consequently, the items of the partition need not be included in the recursive calls to quicksort. The best case for the algorithm now occurs when all elements are equal (or are chosen from a small set of elements). In the case of all equal elements, the modified quicksort will perform only two recursive calls on empty subarrays and thus finish in linear time (assuming the partition subroutine takes no longer than linear time).


Optimizations

Two other important optimizations, also suggested by Sedgewick and widely used in practice, are:qsort.c in GNU libc

/ref> * To make sure at most space is used, wikt:recurse, recur first into the smaller side of the partition, then use a
tail call In computer science, a tail call is a subroutine call performed as the final action of a procedure. If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recur ...
to recur into the other, or update the parameters to no longer include the now sorted smaller side, and iterate to sort the larger side. * When the number of elements is below some threshold (perhaps ten elements), switch to a non-recursive sorting algorithm such as
insertion sort Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time by comparisons. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. Howev ...
that performs fewer swaps, comparisons or other operations on such small arrays. The ideal 'threshold' will vary based on the details of the specific implementation. * An older variant of the previous optimization: when the number of elements is less than the threshold , simply stop; then after the whole array has been processed, perform insertion sort on it. Stopping the recursion early leaves the array -sorted, meaning that each element is at most positions away from its final sorted position. In this case, insertion sort takes time to finish the sort, which is linear if is a constant. Compared to the "many small sorts" optimization, this version may execute fewer instructions, but it makes suboptimal use of the cache memories in modern computers.


Parallelization

Quicksort's divide-and-conquer formulation makes it amenable to
parallelization Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different fo ...
using
task parallelism Task parallelism (also known as function parallelism and control parallelism) is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks—concurrent ...
. The partitioning step is accomplished through the use of a parallel prefix sum algorithm to compute an index for each array element in its section of the partitioned array. Given an array of size , the partitioning step performs work in time and requires additional scratch space. After the array has been partitioned, the two partitions can be sorted recursively in parallel. Assuming an ideal choice of pivots, parallel quicksort sorts an array of size in work in time using additional space. Quicksort has some disadvantages when compared to alternative sorting algorithms, like
merge sort In computer science, merge sort (also commonly spelled as mergesort) is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the order of equal elements is the same i ...
, which complicate its efficient parallelization. The depth of quicksort's divide-and-conquer tree directly impacts the algorithm's scalability, and this depth is highly dependent on the algorithm's choice of pivot. Additionally, it is difficult to parallelize the partitioning step efficiently in-place. The use of scratch space simplifies the partitioning step, but increases the algorithm's memory footprint and constant overheads. Other more sophisticated parallel sorting algorithms can achieve even better time bounds. For example, in 1991 David Powers described a parallelized quicksort (and a related
radix sort In computer science, radix sort is a non-comparative sorting algorithm. It avoids comparison by creating and distributing elements into buckets according to their radix. For elements with more than one significant digit, this bucketing process i ...
) that can operate in time on a CRCW (concurrent read and concurrent write) PRAM (parallel random-access machine) with processors by performing partitioning implicitly.


Formal analysis


Worst-case analysis

The most unbalanced partition occurs when one of the sublists returned by the partitioning routine is of size .The other one may either have element or be empty (have elements), depending on whether the pivot is included in one of subpartitions, as in the Hoare's partitioning routine, or is excluded from both of them, like in the Lomuto's routine. This may occur if the pivot happens to be the smallest or largest element in the list, or in some implementations (e.g., the Lomuto partition scheme as described above) when all the elements are equal. If this happens repeatedly in every partition, then each recursive call processes a list of size one less than the previous list. Consequently, we can make nested calls before we reach a list of size 1. This means that the call tree is a linear chain of nested calls. The th call does work to do the partition, and \textstyle\sum_^n (n-i) = O(n^2), so in that case quicksort takes time.


Best-case analysis

In the most balanced case, each time we perform a partition we divide the list into two nearly equal pieces. This means each recursive call processes a list of half the size. Consequently, we can make only nested calls before we reach a list of size 1. This means that the depth of the call tree is . But no two calls at the same level of the call tree process the same part of the original list; thus, each level of calls needs only time all together (each call has some constant overhead, but since there are only calls at each level, this is subsumed in the factor). The result is that the algorithm uses only time.


Average-case analysis

To sort an array of distinct elements, quicksort takes time in expectation, averaged over all permutations of elements with equal probability. Alternatively, if the algorithm selects the pivot uniformly at random from the input array, the same analysis can be used to bound the expected running time for any input sequence; the expectation is then take over the random choices made by the algorithm (Cormen ''et al.'', ''
Introduction to Algorithms ''Introduction to Algorithms'' is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The book has been widely used as the textbook for algorithms courses at many universities and is co ...
'', Section 7.3). We list here three common proofs to this claim providing different insights into quicksort's workings.


Using percentiles

If each pivot has rank somewhere in the middle 50 percent, that is, between the 25th
percentile In statistics, a ''k''-th percentile (percentile score or centile) is a score ''below which'' a given percentage ''k'' of scores in its frequency distribution falls (exclusive definition) or a score ''at or below which'' a given percentage falls ...
and the 75th percentile, then it splits the elements with at least 25% and at most 75% on each side. If we could consistently choose such pivots, we would only have to split the list at most \log_ n times before reaching lists of size 1, yielding an algorithm. When the input is a random permutation, the pivot has a random rank, and so it is not guaranteed to be in the middle 50 percent. However, when we start from a random permutation, in each recursive call the pivot has a random rank in its list, and so it is in the middle 50 percent about half the time. That is good enough. Imagine that a coin is flipped: heads means that the rank of the pivot is in the middle 50 percent, tail means that it isn't. Now imagine that the coin is flipped over and over until it gets heads. Although this could take a long time, on average only flips are required, and the chance that the coin won't get heads after flips is highly improbable (this can be made rigorous using
Chernoff bound In probability theory, the Chernoff bound gives exponentially decreasing bounds on tail distributions of sums of independent random variables. Despite being named after Herman Chernoff, the author of the paper it first appeared in, the result is d ...
s). By the same argument, Quicksort's recursion will terminate on average at a call depth of only 2 \log_ n. But if its average call depth is , and each level of the call tree processes at most elements, the total amount of work done on average is the product, . The algorithm does not have to verify that the pivot is in the middle half—if we hit it any constant fraction of the times, that is enough for the desired complexity.


Using recurrences

An alternative approach is to set up a
recurrence relation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
for the factor, the time needed to sort a list of size . In the most unbalanced case, a single quicksort call involves work plus two recursive calls on lists of size and , so the recurrence relation is :T(n) = O(n) + T(0) + T(n-1) = O(n) + T(n-1). This is the same relation as for
insertion sort Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time by comparisons. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. Howev ...
and
selection sort In computer science, selection sort is an in-place comparison sorting algorithm. It has an O(''n''2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort. Selection sort is not ...
, and it solves to worst case . In the most balanced case, a single quicksort call involves work plus two recursive calls on lists of size , so the recurrence relation is :T(n) = O(n) + 2T\left(\frac\right). The master theorem for divide-and-conquer recurrences tells us that . The outline of a formal proof of the expected time complexity follows. Assume that there are no duplicates as duplicates could be handled with linear time pre- and post-processing, or considered cases easier than the analyzed. When the input is a random permutation, the rank of the pivot is uniform random from 0 to . Then the resulting parts of the partition have sizes and , and i is uniform random from 0 to . So, averaging over all possible splits and noting that the number of comparisons for the partition is , the average number of comparisons over all permutations of the input sequence can be estimated accurately by solving the recurrence relation: :C(n) = n - 1 + \frac \sum_^ (C(i)+C(n-i-1)) = n - 1 + \frac \sum_^ C(i) :n C(n) = n (n - 1) + 2 \sum_^ C(i) :n C(n) - (n - 1) C(n - 1) = n (n - 1) - (n - 1) (n - 2) + 2 C(n - 1) :n C(n) = (n + 1) C(n - 1) + 2n - 2 :\begin \frac & = \frac + \frac - \frac \le \frac + \frac \\ & = \frac + \frac - \frac + \frac \le \frac + \frac + \frac \\ & \ \ \vdots \\ & = \frac + \sum_^n \frac \leq 2 \sum_^ \frac \approx 2 \int_1^n \frac \mathrm x = 2 \ln n \end Solving the recurrence gives . This means that, on average, quicksort performs only about 39% worse than in its best case. In this sense, it is closer to the best case than the worst case. A
comparison sort A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occ ...
cannot use less than comparisons on average to sort items (as explained in the article Comparison sort) and in case of large ,
Stirling's approximation In mathematics, Stirling's approximation (or Stirling's formula) is an approximation for factorials. It is a good approximation, leading to accurate results even for small values of n. It is named after James Stirling, though a related but less p ...
yields , so quicksort is not much worse than an ideal comparison sort. This fast average runtime is another reason for quicksort's practical dominance over other sorting algorithms.


Using a binary search tree

The following
binary search tree In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and ...
(BST) corresponds to each execution of quicksort: the initial pivot is the root node; the pivot of the left half is the root of the left subtree, the pivot of the right half is the root of the right subtree, and so on. The number of comparisons of the execution of quicksort equals the number of comparisons during the construction of the BST by a sequence of insertions. So, the average number of comparisons for randomized quicksort equals the average cost of constructing a BST when the values inserted (x_1,x_2,\ldots,x_n) form a random permutation. Consider a BST created by insertion of a sequence (x_1,x_2,\ldots,x_n) of values forming a random permutation. Let denote the cost of creation of the BST. We have C=\sum_i \sum_ c_, where c_ is a binary random variable expressing whether during the insertion of x_i there was a comparison to x_j. By
linearity of expectation In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a ...
, the expected value \operatorname /math> of is \operatorname \sum_i \sum_ \Pr(c_). Fix and . The values , once sorted, define intervals. The core structural observation is that x_i is compared to x_j in the algorithm if and only if x_i falls inside one of the two intervals adjacent to x_j. Observe that since (x_1,x_2,\ldots,x_n) is a random permutation, (x_1,x_2,\ldots,x_j,x_i) is also a random permutation, so the probability that x_i is adjacent to x_j is exactly \frac. We end with a short calculation: : \operatorname = \sum_i \sum_ \frac = O\left(\sum_i \log i\right)=O(n \log n).


Space complexity

The space used by quicksort depends on the version used. The in-place version of quicksort has a space complexity of , even in the worst case, when it is carefully implemented using the following strategies. * In-place partitioning is used. This unstable partition requires space. * After partitioning, the partition with the fewest elements is (recursively) sorted first, requiring at most space. Then the other partition is sorted using
tail recursion In computer science, a tail call is a subroutine call performed as the final action of a procedure. If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recur ...
or iteration, which doesn't add to the call stack. This idea, as discussed above, was described by R. Sedgewick, and keeps the stack depth bounded by . Quicksort with in-place and unstable partitioning uses only constant additional space before making any recursive call. Quicksort must store a constant amount of information for each nested recursive call. Since the best case makes at most nested recursive calls, it uses space. However, without Sedgewick's trick to limit the recursive calls, in the worst case quicksort could make nested recursive calls and need auxiliary space. From a bit complexity viewpoint, variables such as ''lo'' and ''hi'' do not use constant space; it takes bits to index into a list of items. Because there are such variables in every stack frame, quicksort using Sedgewick's trick requires bits of space. This space requirement isn't too terrible, though, since if the list contained distinct elements, it would need at least bits of space. Another, less common, not-in-place, version of quicksort uses space for working storage and can implement a stable sort. The working storage allows the input array to be easily partitioned in a stable manner and then copied back to the input array for successive recursive calls. Sedgewick's optimization is still appropriate.


Relation to other algorithms

Quicksort is a space-optimized version of the
binary tree sort A tree sort is a sort algorithm that builds a binary search tree from the elements to be sorted, and then traverses the tree ( in-order) so that the elements come out in sorted order. Its typical use is sorting elements online: after each insert ...
. Instead of inserting items sequentially into an explicit tree, quicksort organizes them concurrently into a tree that is implied by the recursive calls. The algorithms make exactly the same comparisons, but in a different order. An often desirable property of a
sorting algorithm In computer science, a sorting algorithm is an algorithm that puts elements of a List (computing), list into an Total order, order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. ...
is stability – that is the order of elements that compare equal is not changed, allowing controlling order of multikey tables (e.g. directory or folder listings) in a natural way. This property is hard to maintain for in-place quicksort (that uses only constant additional space for pointers and buffers, and additional space for the management of explicit or implicit recursion). For variant quicksorts involving extra memory due to representations using pointers (e.g. lists or trees) or files (effectively lists), it is trivial to maintain stability. The more complex, or disk-bound, data structures tend to increase time cost, in general making increasing use of virtual memory or disk. The most direct competitor of quicksort is
heapsort In computer science, heapsort is a comparison-based sorting algorithm. Heapsort can be thought of as an improved selection sort: like selection sort, heapsort divides its input into a sorted and an unsorted region, and it iteratively shrinks the ...
. Heapsort's running time is , but heapsort's average running time is usually considered slower than in-place quicksort. This result is debatable; some publications indicate the opposite.
Introsort Introsort or introspective sort is a hybrid sorting algorithm that provides both fast average performance and (asymptotically) optimal worst-case performance. It begins with quicksort, it switches to heapsort when the recursion depth exceeds a l ...
is a variant of quicksort that switches to heapsort when a bad case is detected to avoid quicksort's worst-case running time. Major programming languages, such as C++ (in the GNU and LLVM implementations), use introsort. Quicksort also competes with
merge sort In computer science, merge sort (also commonly spelled as mergesort) is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the order of equal elements is the same i ...
, another sorting algorithm. Standard merge sort is an out-of-place
stable sort In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important ...
, unlike standard in-place quicksort and heapsort, and has excellent worst-case performance. The main disadvantage of mergesort is that, when operating on arrays, efficient implementations require auxiliary space, whereas the variant of quicksort with in-place partitioning and tail recursion uses only space. Mergesort works very well on
linked list In computer science, a linked list is a linear collection of data elements whose order is not given by their physical placement in memory. Instead, each element points to the next. It is a data structure consisting of a collection of nodes whic ...
s, requiring only a small, constant amount of auxiliary storage. Although quicksort can be implemented as a stable sort using linked lists, it will often suffer from poor pivot choices without random access. Mergesort is also the algorithm of choice for
external sorting External sorting is a class of sorting algorithms that can handle massive amounts of data. External sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM) and instead they must reside in t ...
of very large data sets stored on slow-to-access media such as
disk storage Disk storage (also sometimes called drive storage) is a general category of storage mechanisms where data is recorded by various electronic, magnetic, optical, or mechanical changes to a surface layer of one or more rotating disks. A disk drive is ...
or
network-attached storage Network-attached storage (NAS) is a file-level (as opposed to block-level storage) computer data storage server connected to a computer network providing data access to a heterogeneous group of clients. The term "NAS" can refer to both the tech ...
.
Bucket sort Bucket sort, or bin sort, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the b ...
with two buckets is very similar to quicksort; the pivot in this case is effectively the value in the middle of the value range, which does well on average for uniformly distributed inputs.


Selection-based pivoting

A
selection algorithm In computer science, a selection algorithm is an algorithm for finding the ''k''th smallest number in a list or array; such a number is called the ''k''th ''order statistic''. This includes the cases of finding the minimum, maximum, and median el ...
chooses the th smallest of a list of numbers; this is an easier problem in general than sorting. One simple but effective selection algorithm works nearly in the same manner as quicksort, and is accordingly known as
quickselect In computer science, quickselect is a selection algorithm to find the ''k''th smallest element in an unordered list. It is also known as the kth order statistics . It is related to the quicksort sorting algorithm. Like quicksort, it was devel ...
. The difference is that instead of making recursive calls on both sublists, it only makes a single tail-recursive call on the sublist that contains the desired element. This change lowers the average complexity to linear or time, which is optimal for selection, but the selection algorithm is still in the worst case. A variant of quickselect, the
median of medians In computer science, the median of medians is an approximate (median) selection algorithm, frequently used to supply a good pivot for an exact selection algorithm, mainly the quickselect, that selects the ''k''th smallest element of an initially u ...
algorithm, chooses pivots more carefully, ensuring that the pivots are near the middle of the data (between the 30th and 70th percentiles), and thus has guaranteed linear time – . This same pivot strategy can be used to construct a variant of quicksort (median of medians quicksort) with time. However, the overhead of choosing the pivot is significant, so this is generally not used in practice. More abstractly, given an selection algorithm, one can use it to find the ideal pivot (the median) at every step of quicksort and thus produce a sorting algorithm with running time. Practical implementations of this variant are considerably slower on average, but they are of theoretical interest because they show an optimal selection algorithm can yield an optimal sorting algorithm.


Variants


Multi-pivot quicksort

Instead of partitioning into two subarrays using a single pivot, multi-pivot quicksort (also multiquicksort) partitions its input into some number of subarrays using pivots. While the dual-pivot case () was considered by Sedgewick and others already in the mid-1970s, the resulting algorithms were not faster in practice than the "classical" quicksort. A 1999 assessment of a multiquicksort with a variable number of pivots, tuned to make efficient use of processor caches, found it to increase the instruction count by some 20%, but simulation results suggested that it would be more efficient on very large inputs. A version of dual-pivot quicksort developed by Yaroslavskiy in 2009 turned out to be fast enough to warrant implementation in
Java 7 The Java language has undergone several changes since JDK 1.0 as well as numerous additions of classes and packages to the standard library. Since J2SE 1.4, the evolution of the Java language has been governed by the Java Community P ...
, as the standard algorithm to sort arrays of primitives (sorting arrays of
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
is done using
Timsort Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data. It was implemented by Tim Peters in 2002 for use in the Python programming language. The algorit ...
). The performance benefit of this algorithm was subsequently found to be mostly related to cache performance, and experimental results indicate that the three-pivot variant may perform even better on modern machines.


External quicksort

For disk files, an external sort based on partitioning similar to quicksort is possible. It is slower than external merge sort, but doesn't require extra disk space. 4 buffers are used, 2 for input, 2 for output. Let N = number of records in the file, B = the number of records per buffer, and M = N/B = the number of buffer segments in the file. Data is read (and written) from both ends of the file inwards. Let X represent the segments that start at the beginning of the file and Y represent segments that start at the end of the file. Data is read into the X and Y read buffers. A pivot record is chosen and the records in the X and Y buffers other than the pivot record are copied to the X write buffer in ascending order and Y write buffer in descending order based comparison with the pivot record. Once either X or Y buffer is filled, it is written to the file and the next X or Y buffer is read from the file. The process continues until all segments are read and one write buffer remains. If that buffer is an X write buffer, the pivot record is appended to it and the X buffer written. If that buffer is a Y write buffer, the pivot record is prepended to the Y buffer and the Y buffer written. This constitutes one partition step of the file, and the file is now composed of two subfiles. The start and end positions of each subfile are pushed/popped to a stand-alone stack or the main stack via recursion. To limit stack space to O(log2(n)), the smaller subfile is processed first. For a stand-alone stack, push the larger subfile parameters onto the stack, iterate on the smaller subfile. For recursion, recurse on the smaller subfile first, then iterate to handle the larger subfile. Once a sub-file is less than or equal to 4 B records, the subfile is sorted in-place via quicksort and written. That subfile is now sorted and in place in the file. The process is continued until all sub-files are sorted and in place. The average number of passes on the file is approximately 1 + ln(N+1)/(4 B), but worst case pattern is N passes (equivalent to O(n^2) for worst case internal sort).


Three-way radix quicksort

This algorithm is a combination of
radix sort In computer science, radix sort is a non-comparative sorting algorithm. It avoids comparison by creating and distributing elements into buckets according to their radix. For elements with more than one significant digit, this bucketing process i ...
and quicksort. Pick an element from the array (the pivot) and consider the first character (key) of the string (multikey). Partition the remaining elements into three sets: those whose corresponding character is less than, equal to, and greater than the pivot's character. Recursively sort the "less than" and "greater than" partitions on the same character. Recursively sort the "equal to" partition by the next character (key). Given we sort using bytes or words of length bits, the best case is and the worst case or at least as for standard quicksort, given for unique keys , and is a hidden constant in all standard
comparison sort A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occ ...
algorithms including quicksort. This is a kind of three-way quicksort in which the middle partition represents a (trivially) sorted subarray of elements that are ''exactly'' equal to the pivot.


Quick radix sort

Also developed by Powers as an parallel PRAM algorithm. This is again a combination of
radix sort In computer science, radix sort is a non-comparative sorting algorithm. It avoids comparison by creating and distributing elements into buckets according to their radix. For elements with more than one significant digit, this bucketing process i ...
and quicksort but the quicksort left/right partition decision is made on successive bits of the key, and is thus for -bit keys. All
comparison sort A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occ ...
algorithms impliclty assume the
transdichotomous model In computational complexity theory, and more specifically in the analysis of algorithms with integer data, the transdichotomous model is a variation of the random access machine in which the machine word size is assumed to match the problem size. ...
with in , as if is smaller we can sort in time using a hash table or
integer sorting In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numb ...
. If but elements are unique within bits, the remaining bits will not be looked at by either quicksort or quick radix sort. Failing that, all comparison sorting algorithms will also have the same overhead of looking through relatively useless bits but quick radix sort will avoid the worst case behaviours of standard quicksort and radix quicksort, and will be faster even in the best case of those comparison algorithms under these conditions of . See Powers for further discussion of the hidden overheads in comparison, radix and parallel sorting.


BlockQuicksort

In any comparison-based sorting algorithm, minimizing the number of comparisons requires maximizing the amount of information gained from each comparison, meaning that the comparison results are unpredictable. This causes frequent
branch misprediction In computer architecture, a branch predictor is a digital circuit that tries to guess which way a branch (e.g., an if–then–else structure) will go before this is known definitively. The purpose of the branch predictor is to improve the flow i ...
s, limiting performance. BlockQuicksort rearranges the computations of quicksort to convert unpredictable branches to
data dependencies A data dependency in computer science is a situation in which a program statement (instruction) refers to the data of a preceding statement. In compiler theory, the technique used to discover data dependencies among statements (or instructions) is ...
. When partitioning, the input is divided into moderate-sized blocks (which fit easily into the
data cache A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which ...
), and two arrays are filled with the positions of elements to swap. (To avoid conditional branches, the position is unconditionally stored at the end of the array, and the index of the end is incremented if a swap is needed.) A second pass exchanges the elements at the positions indicated in the arrays. Both loops have only one conditional branch, a test for termination, which is usually taken. The BlockQuicksort technique is incorporated into
LLVM LLVM is a set of compiler and toolchain technologies that can be used to develop a front end for any programming language and a back end for any instruction set architecture. LLVM is designed around a language-independent intermediate represen ...
's C++ STL implementation, libcxx, providing a 50% improvement on random integer sequences. Pattern-defeating quicksort ( pdqsort), a version of introsort, also incorporates this technique.


Partial and incremental quicksort

Several variants of quicksort exist that separate the smallest or largest elements from the rest of the input.


Generalization

Richard Cole Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong ...
and David C. Kandathil, in 2004, discovered a one-parameter family of sorting algorithms, called partition sorts, which on average (with all input orderings equally likely) perform at most n\log n + (n) comparisons (close to the information theoretic lower bound) and (n\log n) operations; at worst they perform (n\log^2 n) comparisons (and also operations); these are in-place, requiring only additional (\log n) space. Practical efficiency and smaller variance in performance were demonstrated against optimised quicksorts (of Sedgewick and
Bentley Bentley Motors Limited is a British designer, manufacturer and marketer of luxury cars and SUVs. Headquartered in Crewe, England, the company was founded as Bentley Motors Limited by W. O. Bentley (1888–1971) in 1919 in Cricklewood, North ...
- McIlroy).Richard Cole, David C. Kandathil
"The average case analysis of Partition sorts"
European Symposium on Algorithms, 14–17 September 2004, Bergen, Norway. Published: ''Lecture Notes in Computer Science'' 3221, Springer Verlag, pp. 240–251.


See also

*


Notes


References

* * * * * (Reprinted in Hoare and Jones
''Essays in computing science''
1989.) * *
Donald Knuth Donald Ervin Knuth ( ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer sc ...
. ''The Art of Computer Programming'', Volume 3: ''Sorting and Searching'', Third Edition. Addison-Wesley, 1997. . Pages 113–122 of section 5.2.2: Sorting by Exchanging. *
Thomas H. Cormen Thomas H. Cormen is the co-author of ''Introduction to Algorithms'', along with Charles Leiserson, Ron Rivest, and Cliff Stein. In 2013, he published a new book titled '' Algorithms Unlocked''. He is a professor of computer science at Dartmout ...
,
Charles E. Leiserson Charles Eric Leiserson is a computer scientist, specializing in the theory of parallel computing and distributed computing, and particularly practical applications thereof. As part of this effort, he developed the Cilk multithreaded language. ...
,
Ronald L. Rivest Ronald Linn Rivest (; born May 6, 1947) is a cryptographer and an Institute Professor at MIT. He is a member of MIT's Department of Electrical Engineering and Computer Science (EECS) and a member of MIT's Computer Science and Artificial Inte ...
, and
Clifford Stein Clifford Seth Stein (born December 14, 1965), a computer scientist, is a professor of industrial engineering and operations research at Columbia University in New York, NY, where he also holds an appointment in the Department of Computer Scie ...
. ''
Introduction to Algorithms ''Introduction to Algorithms'' is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The book has been widely used as the textbook for algorithms courses at many universities and is co ...
'', Second Edition.
MIT Press The MIT Press is a university press affiliated with the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts (United States). It was established in 1962. History The MIT Press traces its origins back to 1926 when MIT publish ...
and
McGraw-Hill McGraw Hill is an American educational publishing company and one of the "big three" educational publishers that publishes educational content, software, and services for pre-K through postgraduate education. The company also publishes referenc ...
, 2001. . Chapter 7: Quicksort, pp. 145–164. * Faron Moller
Analysis of Quicksort
CS 332: Designing Algorithms. Department of Computer Science,
Swansea University , former_names=University College of Swansea, University of Wales Swansea , motto= cy, Gweddw crefft heb ei dawn , mottoeng="Technical skill is bereft without culture" , established=1920 – University College of Swansea 1996 – University of Wa ...
. * *


External links

* – graphical demonstration *
Open Data Structures – Section 11.1.2 – Quicksort
Pat Morin Patrick Ryan Morin is a Canadian computer scientist specializing in computational geometry and data structures. He is a professor in the School of Computer Science at Carleton University. Education and career Morin was educated at Carleton Univers ...

Interactive illustration of Quicksort
with code walkthrough {{Sorting 1961 in computing Articles with example pseudocode Comparison sorts Sorting algorithms Divide-and-conquer algorithms