Dutch National Flag Problem
The Dutch national flag problem is a computational problem proposed by Edsger Dijkstra.In a chapter of his book ''A Discipline of Programming'' Prentice-Hall, 1976 The flag of the Netherlands consists of three colors: red, white, and blue. Given balls of these three colors arranged randomly in a line (it does not matter how many balls there are), the task is to arrange them such that all balls of the same color are together and their collective color groups are in the correct order. The solution to this problem is of interest for designing sorting algorithms; in particular, variants of the quicksort algorithm that must be robust to repeated elements may use a three-way partitioning function that groups items less than a given key (red), equal to the key (white) and greater than the key (blue). Several solutions exist that have varying performance characteristics, tailored to sorting arrays with either small or large numbers of repeated elements.The latter case occurs in string s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flag Of The Netherlands
The national flag of the Netherlands ( nl, de Nederlandse vlag) is a horizontal tricolour (flag), tricolour of red, white, and blue. The current design originates as a variant of the late 16th century orange-white-blue ''Prince's Flag, Prinsenvlag'' ("Prince's Flag"), evolving in the early 17th century as the red-white-blue ''Statenvlag'' ("States Flag"), the naval flag of the States General of the Netherlands#Dutch Republic, States-General of the Dutch Republic, making the Dutch flag perhaps the oldest Tricolour (flag), tricolour flag in continuous use.As a flag that symbolises the transformation from monarchy to republic, it has inspired both the derivative Flag of Russia, Russian flag, and after the French Revolution in 1789 the vertically striped Flag of France, French tricolour, both flags in turn influenced many other tricolours. During the economic crisis of the 1930s, the old Prince's Flag with the colour orange gained some popularity among some people. To end the confu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Array Data Structure
In computer science, an array is a data structure consisting of a collection of ''elements'' (values or variables), each identified by at least one ''array index'' or ''key''. An array is stored such that the position of each element can be computed from its index tuple by a mathematical formula. The simplest type of data structure is a linear array, also called one-dimensional array. For example, an array of ten 32-bit (4-byte) integer variables, with indices 0 through 9, may be stored as ten words at memory addresses 2000, 2004, 2008, ..., 2036, (in hexadecimal: 0x7D0, 0x7D4, 0x7D8, ..., 0x7F4) so that the element with index ''i'' has the address 2000 + (''i'' × 4). The memory address of the first element of an array is called first address, foundation address, or base address. Because the mathematical concept of a matrix can be represented as a two-dimensional grid, two-dimensional arrays are also sometimes called "matrices". In some cases the term "vector" is used in comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Problems
In theoretical computer science, a computational problem is a problem that may be solved by an algorithm. For example, the problem of factoring :"Given a positive integer ''n'', find a nontrivial prime factor of ''n''." is a computational problem. A computational problem can be viewed as a set of ''instances'' or ''cases'' together with a, possibly empty, set of ''solutions'' for every instance/case. For example, in the factoring problem, the instances are the integers ''n'', and solutions are prime numbers ''p'' that are the nontrivial prime factors of ''n''. Computational problems are one of the main objects of study in theoretical computer science. The field of computational complexity theory attempts to determine the amount of resources (computational complexity) solving a given problem will require and explain why some problems are intractable or undecidable. Computational problems belong to complexity classes that define broadly the resources (e.g. time, space/memory, en ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sorting Algorithms
In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important for optimizing the efficiency of other algorithms (such as search and merge algorithms) that require input data to be in sorted lists. Sorting is also often useful for canonicalizing data and for producing human-readable output. Formally, the output of any sorting algorithm must satisfy two conditions: # The output is in monotonic order (each element is no smaller/larger than the previous element, according to the required order). # The output is a permutation (a reordering, yet retaining all of the original elements) of the input. For optimum efficiency, the input data should be stored in a data structure which allows random access rather than one that allows only sequential access. History and concepts From the beginning of computi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Flag Sort
An American flag sort is an efficient, in-place variant of radix sort that distributes items into buckets. Non-comparative sorting algorithms such as radix sort and American flag sort are typically used to sort large objects such as strings, for which comparison is not a unit-time operation. American flag sort iterates through the bits of the objects, considering several bits of each object at a time. For each set of bits, American flag sort makes two passes through the array of objects: first to count the number of objects that will fall in each bin, and second to place each object in its bucket. This works especially well when sorting a byte at a time, using 256 buckets. With some optimizations, it is twice as fast as quicksort for large sets of strings. The name American flag sort comes by analogy with the Dutch national flag problem in the last step: efficiently partition the array into many "stripes". Algorithm Sorting algorithms in general sort a list of objects acco ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Loop Invariant
In computer science, a loop invariant is a property of a program loop that is true before (and after) each iteration. It is a logical assertion, sometimes checked within the code by an assertion call. Knowing its invariant(s) is essential in understanding the effect of a loop. In formal program verification, particularly the Floyd-Hoare approach, loop invariants are expressed by formal predicate logic and used to prove properties of loops and by extension algorithms that employ loops (usually correctness properties). The loop invariants will be true on entry into a loop and following each iteration, so that on exit from the loop both the loop invariants and the loop termination condition can be guaranteed. From a programming methodology viewpoint, the loop invariant can be viewed as a more abstract specification of the loop, which characterizes the deeper purpose of the loop beyond the details of this implementation. A survey article covers fundamental algorithms from many a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudocode
In computer science, pseudocode is a plain language description of the steps in an algorithm or another system. Pseudocode often uses structural conventions of a normal programming language, but is intended for human reading rather than machine reading. It typically omits details that are essential for machine understanding of the algorithm, such as variable declarations and language-specific code. The programming language is augmented with natural language description details, where convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier for people to understand than conventional programming language code, and that it is an efficient and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications to document algorithms and in planning of software and other algorithms. No broad standard for pseudocode syntax exists, as a program in pseudocode is not an executa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multi-key Quicksort
Multi-key quicksort, also known as three-way radix quicksort, is an algorithm for sorting strings. This hybrid of quicksort and radix sort was originally suggested by P. Shackleton, as reported in one of C.A.R. Hoare's seminal papers on quicksort; its modern incarnation was developed by Jon Bentley and Robert Sedgewick in the mid-1990s. The algorithm is designed to exploit the property that in many problems, strings tend to have shared prefixes. One of the algorithm's uses is the construction of suffix arrays, for which it was one of the fastest algorithms as of 2004. Description The three-way radix quicksort algorithm sorts an array of (pointers to) strings in lexicographic order. It is assumed that all strings are of equal length ; if the strings are of varying length, they must be padded with extra elements that are less than any element in the strings. The pseudocode for the algorithm is then algorithm sort(a : array of string, d : integer) is if length(a) â ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Problem
In theoretical computer science, a computational problem is a problem that may be solved by an algorithm. For example, the problem of factoring :"Given a positive integer ''n'', find a nontrivial prime factor of ''n''." is a computational problem. A computational problem can be viewed as a set of ''instances'' or ''cases'' together with a, possibly empty, set of ''solutions'' for every instance/case. For example, in the factoring problem, the instances are the integers ''n'', and solutions are prime numbers ''p'' that are the nontrivial prime factors of ''n''. Computational problems are one of the main objects of study in theoretical computer science. The field of computational complexity theory attempts to determine the amount of resources ( computational complexity) solving a given problem will require and explain why some problems are intractable or undecidable. Computational problems belong to complexity classes that define broadly the resources (e.g. time, space/memory, e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
String (computer Science)
In computer programming, a string is traditionally a sequence of characters, either as a literal constant or as some kind of variable. The latter may allow its elements to be mutated and the length changed, or it may be fixed (after creation). A string is generally considered as a data type and is often implemented as an array data structure of bytes (or words) that stores a sequence of elements, typically characters, using some character encoding. ''String'' may also denote more general arrays or other sequence (or list) data types and structures. Depending on the programming language and precise data type used, a variable declared to be a string may either cause storage in memory to be statically allocated for a predetermined maximum length or employ dynamic allocation to allow it to hold a variable number of elements. When a string appears literally in source code, it is known as a string literal or an anonymous string. In formal languages, which are used in mathematical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quicksort
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961, it is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. Quicksort is a divide-and-conquer algorithm. It works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. For this reason, it is sometimes called partition-exchange sort. The sub-arrays are then sorted recursively. This can be done in-place, requiring small additional amounts of memory to perform the sorting. Quicksort is a comparison sort, meaning that it can sort items of any type for which a "less-than" relation (formally, a total order) is defined. Most implementations of quicksort are not stable, meaning that the relative order of equal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |