HOME

TheInfoList



OR:

A quick return mechanism is an apparatus to produce a
reciprocating motion Reciprocating motion, also called reciprocation, is a repetitive up-and-down or back-and-forth linear motion. It is found in a wide range of mechanisms, including reciprocating engines and pumps. The two opposite motions that comprise a single r ...
in which the time taken for travel in return stroke is less than in the forward stroke. It is driven by a circular motion source (typically a
motor An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy. Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power g ...
of some sort) and uses a system of links with three turning pairs and a sliding pair. A quick-return mechanism is a subclass of a
slider-crank linkage A slider-crank linkage is a four-link mechanism with three revolute joints and one prismatic, or sliding, joint. The rotation of the crank drives the linear movement the slider, or the expansion of gases against a sliding piston in a cylinder ...
, with an offset crank. Quick return is a common feature of tools in which the action is performed in only one direction of the stroke, such as
shaper A shaper is a type of machine tool that uses linear relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a lathe, except that it is (archetypally) linear instead of ...
s and powered
saw A saw is a tool consisting of a tough blade, wire, or chain with a hard toothed edge. It is used to cut through material, very often wood, though sometimes metal or stone. The cut is made by placing the toothed edge against the material and mov ...
s, because it allows less time to be spent on returning the tool to its initial position.


History

During the early-nineteenth century, cutting methods involved hand tools and cranks, which were often lengthy in duration.
Joseph Whitworth Sir Joseph Whitworth, 1st Baronet (21 December 1803 – 22 January 1887) was an English engineer, entrepreneur, inventor and philanthropist. In 1841, he devised the British Standard Whitworth system, which created an accepted standard for scre ...
changed this by creating the quick return mechanism in the mid-1800s. Using kinematics, he determined that the force and geometry of the rotating joint would affect the force and motion of the connected arm. From an engineering standpoint, the quick return mechanism impacted the technology of the
Industrial Revolution The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going f ...
by minimizing the duration of a full revolution, thus reducing the amount of time needed for a cut or press.


Applications

Quick return mechanisms are found throughout the engineering industry in different machines: *
Shaper A shaper is a type of machine tool that uses linear relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a lathe, except that it is (archetypally) linear instead of ...
* Screw
press Press may refer to: Media * Print media or news media, commonly called "the press" * Printing press, commonly called "the press" * Press (newspaper), a list of newspapers * Press TV, an Iranian television network People * Press (surname), a fam ...
* Power-driven
saw A saw is a tool consisting of a tough blade, wire, or chain with a hard toothed edge. It is used to cut through material, very often wood, though sometimes metal or stone. The cut is made by placing the toothed edge against the material and mov ...
* Mechanical actuator * revolver mechanisms


Design

The disc influences the force of the arm, which makes up the frame of reference of the quick return mechanism. The frame continues to an attached rod, which is connected to the circular disc. Powered by a motor, the disc rotates and the arm follows in the same direction (linear and left-to-right, typically) but at a different speed. When the disc nears a full revolution, the arm reaches its furthest position and returns to its initial position at a quicker rate, hence its name. Throughout the cut, the arm has a constant velocity. Upon returning to its initial position after reaching its maximum horizontal
displacement Displacement may refer to: Physical sciences Mathematics and Physics * Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object). The actual path ...
, the arm reaches its highest
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
. The quick return mechanism was modeled after the crank and slider (arm), and this is present in its appearance and function; however, the crank is usually hand powered and the arm has the same rate throughout an entire revolution, whereas the arm of a quick return mechanism returns at a faster rate. The "quick return" allows for the arm to function with less energy during the cut than the initial cycle of the disc.


Specifications

When using a machine that involves this mechanism, it is very important to not force the machine into reaching its maximum
stress Stress may refer to: Science and medicine * Stress (biology), an organism's response to a stressor such as an environmental condition * Stress (linguistics), relative emphasis or prominence given to a syllable in a word, or to a word in a phrase ...
capacity; otherwise, the machine will break. The durability of the machine is related to the size of the arm and the velocity of the disc, where the arm might not be flexible enough to handle a certain speed. Creating a graphical layout for a quick return mechanism involves all inversions and motions, which is useful in determining the dimensions for a functioning mechanism. A layout would specify the dimensions of the mechanism by highlighting each part and its interaction among the system. These interactions would include
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
, force, velocity, and
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by t ...
. By relating these concepts to their respective analyses (kinematics and dynamics), one can comprehend the effect each part has on another.


Mechanics

In order to derive the force vectors of these mechanisms, one must approach a mechanical design consisting of both kinematic and dynamic analyses.


Kinematic Analysis

Breaking the mechanism up into separate vectors and components allows us to create a kinematic analysis that can solve for the maximum velocity, acceleration, and force the mechanism is capable of in three-dimensional space. Most of the equations involved in the quick return mechanism setup originate from
Hamilton's principle In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, ...
. The position of the arm can be found at different times using the substitution of
Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that fo ...
: :e^=\cos\theta+i\sin\theta into the different components that have been pre-determined, according to the setup. This substitution can solve for various radii and components of the displacement of the arm at different values.
Trigonometry Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies ...
is needed for the complete understanding of the kinematic analyses of the mechanism, where the entire design can be transcribed onto a plane layout, highlighting all of the vector components. An important concept for the analysis of the velocity of the disc relative to the arm is the angular velocity of the disc: :\omega=\frac If one desires to calculate the velocity, one must derive the angles of interaction at a single moment of time, making this equation useful.


Dynamic Analysis

In addition to the kinematic analysis of a quick return mechanism, there is a dynamic analysis present. At certain lengths and attachments, the arm of the mechanism can be evaluated and then adjusted to certain preferences. For example, the differences in the forces acting upon the system at an instant can be represented by
D'Alembert's principle D'Alembert's principle, also known as the Lagrange–d'Alembert principle, is a statement of the fundamental classical laws of motion. It is named after its discoverer, the French physicist and mathematician Jean le Rond d'Alembert. D'Alembert ...
. Depending on the structural design of the quick return mechanism, the
law of cosines In trigonometry, the law of cosines (also known as the cosine formula, cosine rule, or al-Kashi's theorem) relates the lengths of the sides of a triangle to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines states ...
can be used to determine the angles and displacements of the arm. The ratio between the working stroke (engine) and the return stroke can be simplified through the manipulation of these concepts. Despite similarities between quick return mechanisms, there are many different possibilities for the outline of all forces, speeds, lengths, motions, functions, and vectors in a mechanism.


See also

* *


References

{{Reflist Mechanisms (engineering) Mechanical power transmission