In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, quaternionic projective space is an extension of the ideas of
real projective space and
complex projective space, to the case where coordinates lie in the ring of
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s
Quaternionic projective space of dimension ''n'' is usually denoted by
:
and is a
closed manifold
In mathematics, a closed manifold is a manifold without boundary that is compact.
In comparison, an open manifold is a manifold without boundary that has only ''non-compact'' components.
Examples
The only connected one-dimensional example ...
of (real) dimension 4''n''. It is a
homogeneous space
In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements of ' ...
for a
Lie group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
action, in more than one way. The quaternionic projective line
is homeomorphic to the 4-sphere.
In coordinates
Its direct construction is as a special case of the
projective space over a division algebra. The
homogeneous coordinates
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. T ...
of a point can be written
: