In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, quaternionic projective space is an extension of the ideas of
real projective space
In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space.
Basic properti ...
and
complex projective space
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
, to the case where coordinates lie in the ring of
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quater ...
s
Quaternionic projective space of dimension ''n'' is usually denoted by
:
and is a
closed manifold
In mathematics, a closed manifold is a manifold Manifold with boundary, without boundary that is Compact space, compact.
In comparison, an open manifold is a manifold without boundary that has only ''non-compact'' components.
Examples
The onl ...
of (real) dimension 4''n''. It is a
homogeneous space
In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and ...
for a
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
action, in more than one way. The quaternionic projective line
is homeomorphic to the 4-sphere.
In coordinates
Its direct construction is as a special case of the
projective space over a division algebra. The
homogeneous coordinates
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. ...
of a point can be written
: