HOME

TheInfoList



OR:

Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a
unit of measurement A unit of measurement, or unit of measure, is a definite magnitude (mathematics), magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other qua ...
.
Mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
,
time Time is the continuous progression of existence that occurs in an apparently irreversible process, irreversible succession from the past, through the present, and into the future. It is a component quantity of various measurements used to sequ ...
,
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two co ...
, heat, and
angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
are among the familiar examples of quantitative properties. Quantity is among the basic classes of things along with
quality Quality may refer to: Concepts *Quality (business), the ''non-inferiority'' or ''superiority'' of something *Quality (philosophy), an attribute or a property *Quality (physics), in response theory *Energy quality, used in various science discipli ...
, substance, change, and relation. Some quantities are such by their inner nature (as number), while others function as states (properties, dimensions, attributes) of things such as heavy and light, long and short, broad and narrow, small and great, or much and little. Under the name of multitude comes what is discontinuous and discrete and divisible ultimately into indivisibles, such as: ''army, fleet, flock, government, company, party, people, mess (military), chorus, crowd'', and ''number''; all which are cases of collective nouns. Under the name of magnitude comes what is continuous and unified and divisible only into smaller divisibles, such as: ''matter, mass, energy, liquid, material''—all cases of non-collective nouns. Along with analyzing its nature and
classification Classification is the activity of assigning objects to some pre-existing classes or categories. This is distinct from the task of establishing the classes themselves (for example through cluster analysis). Examples include diagnostic tests, identif ...
, the issues of quantity involve such closely related topics as dimensionality, equality, proportion, the measurements of quantities, the units of measurements, number and numbering systems, the types of numbers and their relations to each other as numerical ratios.


Background

In mathematics, the concept of quantity is an ancient one extending back to the time of
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
and earlier. Aristotle regarded quantity as a fundamental ontological and scientific category. In Aristotle's
ontology Ontology is the philosophical study of existence, being. It is traditionally understood as the subdiscipline of metaphysics focused on the most general features of reality. As one of the most fundamental concepts, being encompasses all of realit ...
, quantity or quantum was classified into two different types, which he characterized as follows: In his ''Elements'',
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
developed the theory of ratios of magnitudes without studying the nature of magnitudes, as Archimedes, but giving the following significant definitions: For Aristotle and Euclid, relations were conceived as whole numbers (Michell, 1993).
John Wallis John Wallis (; ; ) was an English clergyman and mathematician, who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 Wallis served as chief cryptographer for Parliament and, later, the royal court. ...
later conceived of ratios of magnitudes as
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
: That is, the ratio of magnitudes of any quantity, whether volume, mass, heat and so on, is a number. Following this, Newton then defined number, and the relationship between quantity and number, in the following terms:


Structure

Continuous quantities possess a particular structure that was first explicitly characterized by Hölder (1901) as a set of axioms that define such features as ''identities'' and ''relations'' between magnitudes. In science, quantitative structure is the subject of empirical investigation and cannot be assumed to exist ''
a priori ('from the earlier') and ('from the later') are Latin phrases used in philosophy to distinguish types of knowledge, Justification (epistemology), justification, or argument by their reliance on experience. knowledge is independent from any ...
'' for any given property. The linear continuum represents the prototype of continuous quantitative structure as characterized by Hölder (1901) (translated in Michell & Ernst, 1996). A fundamental feature of any type of quantity is that the relationships of equality or inequality can in principle be stated in comparisons between particular magnitudes, unlike quality, which is marked by likeness, similarity and difference, diversity. Another fundamental feature is additivity. Additivity may involve concatenation, such as adding two lengths A and B to obtain a third A + B. Additivity is not, however, restricted to extensive quantities but may also entail relations between magnitudes that can be established through experiments that permit tests of hypothesized observable manifestations of the additive relations of magnitudes. Another feature is continuity, on which Michell (1999, p. 51) says of length, as a type of quantitative attribute, "what continuity means is that if any arbitrary length, a, is selected as a unit, then for every positive real number, ''r'', there is a length b such that b = ''r''a". A further generalization is given by the theory of conjoint measurement, independently developed by French economist Gérard Debreu (1960) and by the American mathematical psychologist R. Duncan Luce and statistician
John Tukey John Wilder Tukey (; June 16, 1915 – July 26, 2000) was an American mathematician and statistician, best known for the development of the fast Fourier Transform (FFT) algorithm and box plot. The Tukey range test, the Tukey lambda distributi ...
(1964).


In mathematics

Magnitude (how much) and multitude (how many), the two principal types of quantities, are further divided as mathematical and physical. In formal terms, quantities—their ratios, proportions, order and formal relationships of equality and inequality—are studied by mathematics. The essential part of mathematical quantities consists of having a collection of variables, each assuming a set of values. These can be a set of a single quantity, referred to as a scalar when represented by real numbers, or have multiple quantities as do vectors and
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
s, two kinds of geometric objects. The mathematical usage of a quantity can then be varied and so is situationally dependent. Quantities can be used as being infinitesimal, arguments of a function, variables in an expression (independent or dependent), or probabilistic as in random and
stochastic Stochastic (; ) is the property of being well-described by a random probability distribution. ''Stochasticity'' and ''randomness'' are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; i ...
quantities. In mathematics, magnitudes and multitudes are also not only two distinct kinds of quantity but furthermore relatable to each other.
Number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
covers the topics of the discrete quantities as numbers: number systems with their kinds and relations.
Geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
studies the issues of spatial magnitudes: straight lines, curved lines, surfaces and solids, all with their respective measurements and relationships. A traditional Aristotelian realist philosophy of mathematics, stemming from
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
and remaining popular until the eighteenth century, held that mathematics is the "science of quantity". Quantity was considered to be divided into the discrete (studied by arithmetic) and the continuous (studied by geometry and later
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
). The theory fits reasonably well elementary or school mathematics but less well the abstract topological and algebraic structures of modern mathematics.


In science

Establishing quantitative structure and relationships ''between'' different quantities is the cornerstone of modern science, especially but not restricted to physical sciences. Physics is fundamentally a quantitative science; chemistry, biology and others are increasingly so. Their progress is chiefly achieved due to rendering the abstract qualities of material entities into physical quantities, by postulating that all material bodies marked by quantitative properties or physical dimensions are subject to some measurements and observations. Setting the units of measurement, physics covers such fundamental quantities as space (length, breadth, and depth) and time, mass and force, temperature, energy, and quanta. A distinction has also been made between intensive quantity and extensive quantity as two types of quantitative property, state or relation. The magnitude of an ''intensive quantity'' does not depend on the size, or extent, of the object or system of which the quantity is a property, whereas magnitudes of an ''extensive quantity'' are additive for parts of an entity or subsystems. Thus, magnitude does depend on the extent of the entity or system in the case of extensive quantity. Examples of intensive quantities are
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
and
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
, while examples of extensive quantities are
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
,
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
, and
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
.


In natural language

In human languages, including English,
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
is a
syntactic category A syntactic category is a syntactic unit that theories of syntax assume. Word classes, largely corresponding to traditional parts of speech (e.g. noun, verb, preposition, etc.), are syntactic categories. In phrase structure grammars, the ''phrasa ...
, along with
person A person (: people or persons, depending on context) is a being who has certain capacities or attributes such as reason, morality, consciousness or self-consciousness, and being a part of a culturally established form of social relations suc ...
and
gender Gender is the range of social, psychological, cultural, and behavioral aspects of being a man (or boy), woman (or girl), or third gender. Although gender often corresponds to sex, a transgender person may identify with a gender other tha ...
. The quantity is expressed by identifiers, definite and indefinite, and quantifiers, definite and indefinite, as well as by three types of
noun In grammar, a noun is a word that represents a concrete or abstract thing, like living creatures, places, actions, qualities, states of existence, and ideas. A noun may serve as an Object (grammar), object or Subject (grammar), subject within a p ...
s: 1. count unit nouns or countables; 2. mass nouns, uncountables, referring to the indefinite, unidentified amounts; 3. nouns of multitude ( collective nouns). The word ‘number’ belongs to a noun of multitude standing either for a single entity or for the individuals making the whole. An amount in general is expressed by a special class of words called identifiers, indefinite and definite and quantifiers, definite and indefinite. The amount may be expressed by: singular form and plural from, ordinal numbers before a count noun singular (first, second, third...), the demonstratives; definite and indefinite numbers and measurements (hundred/hundreds, million/millions), or cardinal numbers before count nouns. The set of language quantifiers covers "a few, a great number, many, several (for count names); a bit of, a little, less, a great deal (amount) of, much (for mass names); all, plenty of, a lot of, enough, more, most, some, any, both, each, either, neither, every, no". For the complex case of unidentified amounts, the parts and examples of a mass are indicated with respect to the following: a measure of a mass (two kilos of rice and twenty bottles of milk or ten pieces of paper); a piece or part of a mass (part, element, atom, item, article, drop); or a shape of a container (a basket, box, case, cup, bottle, vessel, jar).


Further examples

Some further examples of quantities are: * 1.76 litres ( liters) of milk, a continuous quantity * 2''πr'' metres, where ''r'' is the length of a
radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
of a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
expressed in metres (or meters), also a continuous quantity * one apple, two apples, three apples, where the number is an integer representing the count of a denumerable collection of objects (apples) * 500 people (also a type of count data) * a ''couple'' conventionally refers to two objects. * ''a few'' usually refers to an indefinite, but usually small number, greater than one. * ''quite a few'' also refers to an indefinite, but surprisingly (in relation to the context) large number. * ''several'' refers to an indefinite, but usually small, number – usually indefinitely greater than "a few".


Dimensionless quantity


See also

*
Physical quantity A physical quantity (or simply quantity) is a property of a material or system that can be Quantification (science), quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ''nu ...
* Quantification (science) * Observable quantity * Numerical value equation


References


Sources

* Aristotle, Logic (Organon): Categories, in Great Books of the Western World, V.1. ed. by Adler, M.J.,
Encyclopædia Britannica The is a general knowledge, general-knowledge English-language encyclopaedia. It has been published by Encyclopædia Britannica, Inc. since 1768, although the company has changed ownership seven times. The 2010 version of the 15th edition, ...
, Inc., Chicago (1990) * Aristotle, Physical Treatises: Physics, in Great Books of the Western World, V.1, ed. by Adler, M.J., Encyclopædia Britannica, Inc., Chicago (1990) * Aristotle, Metaphysics, in Great Books of the Western World, V.1, ed. by Adler, M.J., Encyclopædia Britannica, Inc., Chicago (1990) * Franklin, J. (2014)
Quantity and number
in ''Neo-Aristotelian Perspectives in Metaphysics'', ed. D.D. Novotny and L. Novak, New York: Routledge, 221–44. * Hölder, O. (1901). Die Axiome der Quantität und die Lehre vom Mass. ''Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig'', Mathematische-Physicke Klasse, 53, 1–64. * Klein, J. (1968). ''Greek Mathematical Thought and the Origin of Algebra. Cambridge''. Mass:
MIT Press The MIT Press is the university press of the Massachusetts Institute of Technology (MIT), a private research university in Cambridge, Massachusetts. The MIT Press publishes a number of academic journals and has been a pioneer in the Open Ac ...
. * Laycock, H. (2006). Words without Objects: Oxford, Clarendon Press
Oxfordscholarship.com
* Michell, J. (1993). The origins of the representational theory of measurement: Helmholtz, Hölder, and Russell. ''Studies in History and Philosophy of Science'', 24, 185–206. * Michell, J. (1999). ''Measurement in Psychology''. Cambridge:
Cambridge University Press Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessme ...
. * Michell, J. & Ernst, C. (1996). The axioms of quantity and the theory of measurement: translated from Part I of Otto Hölder's German text "Die Axiome der Quantität und die Lehre vom Mass". ''Journal of Mathematical Psychology'', 40, 235–252. * Newton, I. (1728/1967). Universal Arithmetic: Or, a Treatise of Arithmetical Composition and Resolution. In D.T. Whiteside (Ed.), ''The mathematical Works of Isaac Newton'', Vol. 2 (pp. 3–134). New York: Johnson Reprint Corp. * Wallis, J. ''Mathesis universalis'' (as quoted in Klein, 1968).


External links

{{Authority control Metaphysical properties Measurement Ontology