In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an
irrational number
In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integ ...
that is the solution to some
quadratic equation
In algebra, a quadratic equation () is any equation that can be rearranged in standard form as
ax^2 + bx + c = 0\,,
where represents an unknown (mathematics), unknown value, and , , and represent known numbers, where . (If and then the equati ...
with
rational
Rationality is the quality of being guided by or based on reasons. In this regard, a person acts rationally if they have a good reason for what they do or a belief is rational if it is based on strong evidence. This quality can apply to an abili ...
coefficient
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
s which is
irreducible
In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole.
Emergence ...
over the
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their
least common denominator
In mathematics, the lowest common denominator or least common denominator (abbreviated LCD) is the lowest common multiple of the denominators of a set of fractions. It simplifies adding, subtracting, and comparing fractions.
Description
The l ...
, a quadratic irrational is an irrational root of some quadratic equation with
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
coefficients. The quadratic irrational numbers, a
subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s, are
algebraic number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s of
degree 2, and can therefore be expressed as
:
for integers ; with , and non-zero, and with
square-free {{no footnotes, date=December 2015
In mathematics, a square-free element is an element ''r'' of a unique factorization domain ''R'' that is not divisible by a non-trivial square. This means that every ''s'' such that s^2\mid r is a unit of ''R''.
A ...
. When is positive, we get real quadratic irrational numbers, while a negative gives complex quadratic irrational numbers which are not
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s. This defines an
injection
Injection or injected may refer to:
Science and technology
* Injective function, a mathematical function mapping distinct arguments to distinct values
* Injection (medicine), insertion of liquid into the body with a syringe
* Injection, in broadca ...
from the quadratic irrationals to quadruples of integers, so their
cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
is at most
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
; since on the other hand every square root of a
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
is a distinct quadratic irrational, and there are countably many prime numbers, they are at least countable; hence the quadratic irrationals are a
countable set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
.
Quadratic irrationals are used in
field theory to construct
field extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
s of the
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
of rational numbers . Given the square-free integer , the augmentation of by quadratic irrationals using produces a
quadratic field
In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers.
Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 an ...
). For example, the
inverses of elements of ) are of the same form as the above algebraic numbers:
:
Quadratic irrationals have useful properties, especially in relation to
continued fraction
In mathematics, a continued fraction is an expression (mathematics), expression obtained through an iterative process of representing a number as the sum of its integer part and the multiplicative inverse, reciprocal of another number, then writ ...
s, where we have the result that ''all'' real quadratic irrationals, and ''only'' real quadratic irrationals, have
periodic continued fraction
In mathematics, an infinite periodic continued fraction is a continued fraction that can be placed in the form
:
x = a_0 + \cfrac
where the initial block of ''k'' + 1 partial denominators is followed by a block 'a'k''+1, ''a'k''+2,.. ...
forms. For example
:
_for_continued_fractions.
It_follows_that_every_quadratic_irrational_number_can_be_written_in_the_form
: