Algebraic Number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the polynomial . That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number 1 + i is algebraic because it is a root of . All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as and , are called transcendental numbers. The set of algebraic numbers is countably infinite and has measure zero in the Lebesgue measure as a subset of the uncountable complex numbers. In that sense, almost all complex numbers are transcendental. Examples * All rational numbers are algebraic. Any rational number, expressed as the quotient of an integer and a (non-zero) natural number , satisfies the above definition, because is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isosceles Right Triangle With Legs Length 1
In geometry, an isosceles triangle () is a triangle that has two sides of equal length. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at least'' two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids. The mathematical study of isosceles triangles dates back to ancient Egyptian mathematics and Babylonian mathematics. Isosceles triangles have been used as decoration from even earlier times, and appear frequently in architecture and design, for instance in the pediments and gables of buildings. The two equal sides are called the legs and the third side is called the base of the triangle. The other dimensions of the triangle, such as its height, area, and perimeter, can be calculated by simple formulas from the lengths of the legs and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anchor
An anchor is a device, normally made of metal , used to secure a vessel to the bed of a body of water to prevent the craft from drifting due to wind or current. The word derives from Latin ''ancora'', which itself comes from the Greek ἄγκυρα (ankȳra). Anchors can either be temporary or permanent. Permanent anchors are used in the creation of a mooring, and are rarely moved; a specialist service is normally needed to move or maintain them. Vessels carry one or more temporary anchors, which may be of different designs and weights. A sea anchor is a drag device, not in contact with the seabed, used to minimise drift of a vessel relative to the water. A drogue is a drag device used to slow or help steer a vessel running before a storm in a following or overtaking sea, or when crossing a bar in a breaking sea.. Overview Anchors achieve holding power either by "hooking" into the seabed, or mass, or a combination of the two. Permanent moorings use large mass ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Liouville Number
In number theory, a Liouville number is a real number ''x'' with the property that, for every positive integer ''n'', there exists a pair of integers (''p, q'') with ''q'' > 1 such that :0 1 + \log_2(d)~, the last inequality above implies :\left, x - \frac \ \ge \frac > \frac \ge \frac ~. Therefore, in the case ~ \left, c\,q - d\,p \ > 0 ~ such pair of integers ~(\,p,\,q\,)~ would violate the ''second'' inequality in the definition of a Liouville number, for some positive integer . We conclude that there is no pair of integers ~(\,p,\,q\,)~, with ~ q > 1 ~, that would qualify such an ~ x = c / d ~, as a Liouville number. Hence a Liouville number, if it exists, cannot be rational. (The section on ''Liouville's constant'' proves that Liouville numbers exist by exhibiting the construction of one. The proof given in this section implies that this number must be irrational.) Uncountability Consider, for example, the number :3.1400010000000000000000050000.... 3.14(3 zeros)1(17 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lindemann–Weierstrass Theorem
In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following: In other words, the extension field \mathbb(e^, \dots, e^) has transcendence degree over \mathbb. An equivalent formulation , is the following: This equivalence transforms a linear relation over the algebraic numbers into an algebraic relation over \mathbb by using the fact that a symmetric polynomial whose arguments are all conjugates of one another gives a rational number. The theorem is named for Ferdinand von Lindemann and Karl Weierstrass. Lindemann proved in 1882 that is transcendental for every non-zero algebraic number thereby establishing that is transcendental (see below). Weierstrass proved the above more general statement in 1885. The theorem, along with the Gelfond–Schneider theorem, is extended by Baker's theorem, and all of these would be further generalized by Schanuel's conjec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Integer
In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients are integers. The set of all algebraic integers is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers. The ring of integers of a number field , denoted by , is the intersection of and : it can also be characterised as the maximal order of the field . Each algebraic integer belongs to the ring of integers of some number field. A number is an algebraic integer if and only if the ring \mathbb alpha/math> is finitely generated as an abelian group, which is to say, as a \mathbb- module. Definitions The following are equivalent definitions of an algebraic integer. Let be a number field (i.e., a finite extension of \mathbb, the field of rational numbers), in other word ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Irreducible Polynomial
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as \left(x - \sqrt\right)\left(x + \sqrt\right) if it is considered as a polynomial with real coefficients. One says that the polynomial is irreducible over the integers but not over the reals. Polynomial irreducibility can be considered for polynomials with coefficients in an integral domain, and there are two common definitions. Most often, a po ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trigonometric Functions
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis. The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used. Each of these six trigonometric functions has a corresponding inverse function, and an analog among the hyperbolic functions. The oldest definitions of trigonometric functions, related to right-angle triangles, define them only for acute angles. To extend the sine a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abel–Ruffini Theorem
In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, ''general'' means that the coefficients of the equation are viewed and manipulated as indeterminates. The theorem is named after Paolo Ruffini, who made an incomplete proof in 1799, (which was refined and completed in 1813 and accepted by Cauchy) and Niels Henrik Abel, who provided a proof in 1824. ''Abel–Ruffini theorem'' refers also to the slightly stronger result that there are equations of degree five and higher that cannot be solved by radicals. This does not follow from Abel's statement of the theorem, but is a corollary of his proof, as his proof is based on the fact that some polynomials in the coefficients of the equation are not the zero polynomial. This improved statement follows directly from . Galois theory implies also that :x^5-x-1=0 i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today. History The prehistory of arithmetic is limited to a small number of artifacts, which may indicate the conception of addition and subtraction, the best-known being the Ishango bone from central Africa, dating from somewhere between 20,000 and 18,000 BC, although its interpretation is disputed. The earliest written records indicate the Egyptians and Babylonians used all the elementary arithmetic operations: addition, subtraction, multiplication, and division, as early as 2000 BC. These artifacts do not always reveal the specific process used for solving problems, b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructible Number
In geometry and algebra, a real number r is constructible if and only if, given a line segment of unit length, a line segment of length , r, can be constructed with compass and straightedge in a finite number of steps. Equivalently, r is constructible if and only if there is a closed-form expression for r using only integers and the operations for addition, subtraction, multiplication, division, and square roots. The geometric definition of constructible numbers motivates a corresponding definition of constructible points, which can again be described either geometrically or algebraically. A point is constructible if it can be produced as one of the points of a compass and straight edge construction (an endpoint of a line segment or crossing point of two lines or circles), starting from a given unit length segment. Alternatively and equivalently, taking the two endpoints of the given segment to be the points (0, 0) and (1, 0) of a Cartesian coordinate system, a point is constr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian Integer
In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /math> or \Z Gaussian integers share many properties with integers: they form a Euclidean domain, and have thus a Euclidean division and a Euclidean algorithm; this implies unique factorization and many related properties. However, Gaussian integers do not have a total ordering that respects arithmetic. Gaussian integers are algebraic integers and form the simplest ring of quadratic integers. Gaussian integers are named after the German mathematician Carl Friedrich Gauss. Basic definitions The Gaussian integers are the set :\mathbf \, \qquad \text i^2 = -1. In other words, a Gaussian integer is a complex number such that its real and imaginary parts are both integers. Since the Gaussian integers are closed under addition and mu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |