Pressurised Water Reactor
   HOME

TheInfoList



OR:

A pressurized water reactor (PWR) is a type of light-water
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
. PWRs constitute the large majority of the world's
nuclear power plant A nuclear power plant (NPP) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a electric generator, generato ...
s (with notable exceptions being the UK, Japan and Canada). In a PWR, the primary
coolant A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosio ...
(
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
) is pumped under
high pressure In science and engineering the study of high pressure examines its effects on materials and the design and construction of devices, such as a diamond anvil cell, which can create high pressure. By ''high pressure'' is usually meant pressures of th ...
to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a
steam generator A Steam generator is a device used to boil water to create steam. More specifically, it may refer to: *Boiler (steam generator), a closed vessel in which water is heated under pressure *Monotube steam generator *Supercritical steam generator or Ben ...
, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a
boiling water reactor A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is a design different from a Soviet graphite-moderated RBMK. It is the second most common type of electricity-generating nuc ...
(BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and
neutron moderator In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely mo ...
. Most use anywhere from two to four vertically mounted steam generators;
VVER The water-water energetic reactor (WWER), or VVER (from russian: водо-водяной энергетический реактор; transliterates as ; ''water-water power reactor'') is a series of pressurized water reactor designs originally de ...
reactors use horizontal steam generators. PWRs were originally designed to serve as
nuclear marine propulsion Nuclear marine propulsion is propulsion of a ship or submarine with heat provided by a nuclear reactor. The power plant heats water to produce steam for a turbine used to turn the ship's propeller through a gearbox or through an electric generato ...
for
nuclear submarine A nuclear submarine is a submarine powered by a nuclear reactor, but not necessarily nuclear-armed. Nuclear submarines have considerable performance advantages over "conventional" (typically diesel-electric) submarines. Nuclear propulsion, ...
s and were used in the original design of the second commercial power plant at
Shippingport Atomic Power Station The Shippingport Atomic Power Station was (according to the US Nuclear Regulatory Commission) the world's first full-scale atomic electric power plant devoted exclusively to peacetime uses.Though Obninsk Nuclear Power Plant was connected to the M ...
. PWRs currently operating in the United States are considered
Generation II reactor A generation II reactor is a design classification for a nuclear reactor, and refers to the class of commercial reactors built until the end of the 1990s. Prototypical and older versions of PWR, CANDU, BWR, AGR, RBMK and VVER are among them. ...
s. Russia's
VVER The water-water energetic reactor (WWER), or VVER (from russian: водо-водяной энергетический реактор; transliterates as ; ''water-water power reactor'') is a series of pressurized water reactor designs originally de ...
reactors are similar to US PWRs, but the
VVER-1200 The water-water energetic reactor (WWER), or VVER (from russian: водо-водяной энергетический реактор; transliterates as ; ''water-water power reactor'') is a series of pressurized water reactor designs originally de ...
is not considered Generation II (see below). France operates many PWRs to generate the bulk of its electricity.


History

Several hundred PWRs are used for marine propulsion in
aircraft carrier An aircraft carrier is a warship that serves as a seagoing airbase, equipped with a full-length flight deck and facilities for carrying, arming, deploying, and recovering aircraft. Typically, it is the capital ship of a fleet, as it allows a ...
s, nuclear submarines and
ice breaker An icebreaker is a special-purpose ship or boat designed to move and navigate through ice-covered waters, and provide safe waterways for other boats and ships. Although the term usually refers to ice-breaking ships, it may also refer to smaller ...
s. In the US, they were originally designed at the
Oak Ridge National Laboratory Oak Ridge National Laboratory (ORNL) is a U.S. multiprogram science and technology national laboratory sponsored by the U.S. Department of Energy (DOE) and administered, managed, and operated by UT–Battelle as a federally funded research and ...
for use as a nuclear submarine power plant with a fully operational submarine power plant located at the
Idaho National Laboratory Idaho National Laboratory (INL) is one of the national laboratories of the United States Department of Energy and is managed by the Battelle Energy Alliance. While the laboratory does other research, historically it has been involved with nu ...
. Follow-on work was conducted by Westinghouse
Bettis Atomic Power Laboratory Bettis Atomic Power Laboratory is a U.S. Government-owned research and development facility in the Pittsburgh suburb of West Mifflin, Pennsylvania, that works exclusively on the design and development of nuclear power for the U.S. Navy. It was one ...
. The first purely commercial nuclear power plant at
Shippingport Atomic Power Station The Shippingport Atomic Power Station was (according to the US Nuclear Regulatory Commission) the world's first full-scale atomic electric power plant devoted exclusively to peacetime uses.Though Obninsk Nuclear Power Plant was connected to the M ...
was originally designed as a pressurized water reactor (although the first power plant connected to the grid was at
Obninsk Obninsk (russian: О́бнинск) is a city in Kaluga Oblast, Russia, located on the bank of the Protva River southwest of Moscow and northeast of Kaluga. Population: History The history of Obninsk began in 1945 when the First Research In ...
, USSR), on insistence from
Admiral Admiral is one of the highest ranks in some navies. In the Commonwealth nations and the United States, a "full" admiral is equivalent to a "full" general in the army or the air force, and is above vice admiral and below admiral of the fleet, ...
Hyman G. Rickover Hyman G. Rickover (January 27, 1900 – July 8, 1986) was an admiral in the U.S. Navy. He directed the original development of naval nuclear propulsion and controlled its operations for three decades as director of the U.S. Naval Reactors offic ...
that a viable commercial plant would include none of the "crazy thermodynamic cycles that everyone else wants to build". The United States
Army Nuclear Power Program The Army Nuclear Power Program (ANPP) was a program of the United States Army to develop small pressurized water and boiling water nuclear power reactors to generate electrical and space-heating energy primarily at remote, relatively inaccessib ...
operated pressurized water reactors from 1954 to 1974.
Three Mile Island Nuclear Generating Station Three Mile Island Nuclear Generating Station (commonly abbreviated as TMI) is a closed nuclear power plant on Three Mile Island in Londonderry Township, Dauphin County, Pennsylvania on Lake Frederic, a reservoir in the Susquehanna River just s ...
initially operated two pressurized water reactor plants, TMI-1 and TMI-2. The partial meltdown of TMI-2 in 1979 essentially ended the growth in new construction of nuclear power plants in the United States for two decades. Watts Bar unit 2 (a Westinghouse 4-loop PWR) came online in 2016, becoming the first new nuclear reactor in the United States since 1996. The pressurized water reactor has several new
Generation III reactor Generation III reactors, or Gen III reactors, are a class of nuclear reactors designed to succeed Generation II reactors, incorporating evolutionary improvements in design. These include improved fuel technology, higher thermal efficiency, sign ...
evolutionary designs: the
AP1000 The AP1000 is a nuclear power plant designed and sold by Westinghouse Electric Company. The plant is a pressurized water reactor with improved use of passive nuclear safety and many design features intended to lower its capital cost and improve ...
, VVER-1200, ACPR1000+, APR1400,
Hualong One The Hualong One ( zh , c=华龙一号 , p=Huálóng yī hào , l=China Dragon №1) is a Chinese Generation III pressurized water nuclear reactor jointly developed by the China General Nuclear Power Group (CGN) and the China National Nuclear Cor ...
,
IPWR-900 The Indian Pressurized Water Reactor-900 (IPWR-900) is a class of pressurized water reactors being designed by Bhabha Atomic Research Centre (BARC) in partnership with Nuclear Power Corporation of India Limited to supplement the Indian three- ...
and EPR. The first AP1000 and EPR reactors were connected to the power grid in China in 2018. In 2020,
NuScale Power NuScale Power is a publicly traded American company that designs and markets small modular reactors (SMRs). It is headquartered in Tigard, Oregon, United States. NuScale has been approved to build reactors in Idaho, in 2029 and 2030. The design ...
became the first U.S. company to receive regulatory approval from the Nuclear Regulatory Commission for a
small modular reactor Small modular reactors (SMRs) are a proposed class of nuclear fission reactors, smaller than conventional nuclear reactors, which can be built in one location (such as a factory), then shipped, commissioned, and operated at a separate site. The ...
with a modified PWR design. Also in 2020, the
Energy Impact Center The Energy Impact Center is an American research institute based in Washington, D.C. It primarily advocates for the expansion of nuclear power as a clean energy solution to climate change. The organization's research into nuclear power has led it ...
introduced the OPEN100 project, which published
open-source Open source is source code that is made freely available for possible modification and redistribution. Products include permission to use the source code, design documents, or content of the product. The open-source model is a decentralized sof ...
blueprints for the construction of a 100 MWelectric nuclear power plant with a PWR design.


Design

Nuclear fuel Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Most nuclear fuels contain heavy fissile actinide elements that are capable of undergoing ...
in the
reactor pressure vessel A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core. Classification of nuclear power reactors Russian Soviet era RBMK reactors have each fuel a ...
is engaged in a controlled
fission chain reaction Fission, a splitting of something into two or more parts, may refer to: * Fission (biology), the division of a single entity into two or more parts and the regeneration of those parts into separate entities resembling the original * Nuclear fissio ...
, which produces heat, heating the water in the primary coolant loop by thermal conduction through the fuel cladding. The hot primary coolant is pumped into a
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
called the
steam generator A Steam generator is a device used to boil water to create steam. More specifically, it may refer to: *Boiler (steam generator), a closed vessel in which water is heated under pressure *Monotube steam generator *Supercritical steam generator or Ben ...
, where it flows through several thousand small tubes. Heat is transferred through the walls of these tubes to the lower pressure secondary coolant located on the sheet side of the exchanger where the secondary coolant evaporates to pressurized steam. This transfer of heat is accomplished without mixing the two fluids to prevent the secondary coolant from becoming radioactive. Some common steam generator arrangements are u-tubes or single pass heat exchangers. In a nuclear power station, the pressurized steam is fed through a steam turbine which drives an
electrical generator In electricity generation, a generator is a device that converts motive power (mechanical energy) or fuel-based power (chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas ...
connected to the electric grid for transmission. After passing through the turbine the secondary coolant (water-steam mixture) is cooled down and condensed in a condenser. The condenser converts the steam to a liquid so that it can be pumped back into the steam generator, and maintains a vacuum at the turbine outlet so that the pressure drop across the turbine, and hence the energy extracted from the steam, is maximized. Before being fed into the steam generator, the condensed steam (referred to as feedwater) is sometimes preheated in order to minimize thermal shock. The steam generated has other uses besides power generation. In nuclear ships and submarines, the steam is fed through a steam turbine connected to a set of speed reduction gears to a shaft used for
propulsion Propulsion is the generation of force by any combination of pushing or pulling to modify the translational motion of an object, which is typically a rigid body (or an articulated rigid body) but may also concern a fluid. The term is derived from ...
. Direct mechanical action by expansion of the steam can be used for a steam-powered
aircraft catapult An aircraft catapult is a device used to allow aircraft to take off from a very limited amount of space, such as the deck of a vessel, but can also be installed on land-based runways in rare cases. It is now most commonly used on aircraft carrier ...
or similar applications.
District heating District heating (also known as heat networks or teleheating) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating a ...
by the steam is used in some countries and direct heating is applied to internal plant applications. Two things are characteristic for the pressurized water reactor (PWR) when compared with other reactor types: coolant loop separation from the steam system and pressure inside the primary coolant loop. In a PWR, there are two separate coolant loops (primary and secondary), which are both filled with demineralized/deionized water. A boiling water reactor, by contrast, has only one coolant loop, while more exotic designs such as
breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. Breeder reactors achieve this because their neutron economy is high enough to create more fissile fuel than they use, by irradiation of a fertile mate ...
s use substances other than water for coolant and moderator (e.g. sodium in its liquid state as coolant or graphite as a moderator). The pressure in the primary coolant loop is typically , which is notably higher than in other
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
s, and nearly twice that of a boiling water reactor (BWR). As an effect of this, only localized boiling occurs and steam will recondense promptly in the bulk fluid. By contrast, in a boiling water reactor the primary coolant is designed to boil.


Reactor


Coolant

Light water is used as the primary coolant in a PWR. Water enters through the bottom of the reactor's core at about and is heated as it flows upwards through the reactor core to a temperature of about . The water remains liquid despite the high temperature due to the high pressure in the primary coolant loop, usually around 155
bar Bar or BAR may refer to: Food and drink * Bar (establishment), selling alcoholic beverages * Candy bar * Chocolate bar Science and technology * Bar (river morphology), a deposit of sediment * Bar (tropical cyclone), a layer of cloud * Bar (u ...
(15.0 
MPa MPA or mPa may refer to: Academia Academic degrees * Master of Performing Arts * Master of Professional Accountancy * Master of Public Administration * Master of Public Affairs Schools * Mesa Preparatory Academy * Morgan Park Academy * Mound ...
153  atm, 2,250 
psi Psi, PSI or Ψ may refer to: Alphabetic letters * Psi (Greek) (Ψ, ψ), the 23rd letter of the Greek alphabet * Psi (Cyrillic) (Ѱ, ѱ), letter of the early Cyrillic alphabet, adopted from Greek Arts and entertainment * "Psi" as an abbreviatio ...
). The water in a PWR cannot exceed a temperature of or a pressure of 22.064 MPa (3200 psi or 218 atm), because those are the critical point of water.
Supercritical water reactor The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure (i.e. greater than 22.1 MPa). The term ''critical'' in this context refers to the c ...
s are (as of 2022) only a proposed concept in which the coolant would never leave the supercritical state. However, as this requires even higher pressures than a PWR and can cause issues of corrosion, so far no such reactor has been built.


Pressurizer

Pressure in the primary circuit is maintained by a pressurizer, a separate vessel that is connected to the primary circuit and partially filled with water which is heated to the saturation temperature (boiling point) for the desired pressure by submerged electrical heaters. To achieve a pressure of , the pressurizer temperature is maintained at 345 °C (653 °F), which gives a subcooling margin (the difference between the pressurizer temperature and the highest temperature in the reactor core) of 30 °C (54 °F). As 345 °C is the boiling point of water at 155 bar, the liquid water is at the edge of a phase change. Thermal transients in the reactor coolant system result in large swings in pressurizer liquid/steam volume, and total pressurizer volume is designed around absorbing these transients without uncovering the heaters or emptying the pressurizer. Pressure transients in the primary coolant system manifest as temperature transients in the pressurizer and are controlled through the use of automatic heaters and water spray, which raise and lower pressurizer temperature, respectively.


Pumps

The coolant is pumped around the primary circuit by powerful pumps. These pumps have a rate of ~100,000 gallons of coolant per minute. After picking up heat as it passes through the reactor core, the primary coolant transfers heat in a steam generator to water in a lower pressure secondary circuit, evaporating the secondary coolant to saturated steam — in most designs 6.2 MPa (60 atm, 900  psia), 275 °C (530 °F) — for use in the steam turbine. The cooled primary coolant is then returned to the reactor vessel to be heated again.


Moderator

Pressurized water reactors, like all
thermal reactor A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and struct ...
designs, require the fast fission neutrons to be slowed (a process called moderation or thermalizing) in order to interact with the nuclear fuel and sustain the chain reaction. In PWRs the coolant water is used as a moderator by letting the neutrons undergo multiple collisions with light hydrogen atoms in the water, losing speed in the process. This "moderating" of neutrons will happen more often when the water is more dense (more collisions will occur). The use of water as a moderator is an important safety feature of PWRs, as an increase in temperature may cause the water to expand, giving greater 'gaps' between the water molecules and reducing the probability of thermalization — thereby reducing the extent to which neutrons are slowed and hence reducing the reactivity in the reactor. Therefore, if reactivity increases beyond normal, the reduced moderation of neutrons will cause the chain reaction to slow down, producing less heat. This property, known as the negative
temperature coefficient A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property ''R'' that changes when the temperature changes by ''dT'', the temperature coefficient α is def ...
of reactivity, makes PWR reactors very stable. This process is referred to as 'Self-Regulating', i.e. the hotter the coolant becomes, the less reactive the plant becomes, shutting itself down slightly to compensate and vice versa. Thus the plant controls itself around a given temperature set by the position of the control rods. In contrast, the
RBMK The RBMK (russian: реактор большой мощности канальный, РБМК; ''reaktor bolshoy moshchnosti kanalnyy'', "high-power channel-type reactor") is a class of graphite-moderated nuclear power reactor designed and buil ...
reactor design used at Chernobyl, which uses graphite instead of water as the moderator and uses boiling water as the coolant, has a large positive thermal coefficient of reactivity that increases heat generation when coolant water temperatures increase. This makes the RBMK design less stable than pressurized water reactors. In addition to its property of slowing down neutrons when serving as a moderator, water also has a property of absorbing neutrons, albeit to a lesser degree. When the coolant water temperature increases, the boiling increases, which creates voids. Thus there is less water to absorb thermal neutrons that have already been slowed by the graphite moderator, causing an increase in reactivity. This property is called the
void coefficient In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor ...
of reactivity, and in an RBMK reactor like Chernobyl, the void coefficient is positive, and fairly large, causing rapid transients. This design characteristic of the RBMK reactor is generally seen as one of several causes of the
Chernobyl disaster The Chernobyl disaster was a nuclear accident that occurred on 26 April 1986 at the No. 4 reactor in the Chernobyl Nuclear Power Plant, near the city of Pripyat in the north of the Ukrainian SSR in the Soviet Union. It is one of only two nuc ...
. Heavy water has very low neutron absorption, so
heavy water reactor A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water ( deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. T ...
s tend to have a positive void coefficient, though the
CANDU The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide ( heavy water) moderator and its use of (originally, natural) uranium fuel. C ...
reactor design mitigates this issue by using unenriched, natural uranium; these reactors are also designed with a number of passive safety systems not found in the original RBMK design. In a case of total loss of the coolant/moderator (in a reactor where heavy water is both the coolant and the moderator) an automatic
scram A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reactor ...
occurs, just as would happen in a light water reactor. Furthermore, no criticality occurs when a heavy water reactor is supplied with (ordinary) light water as an emergency coolant. Depending on
burnup In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per init ...
,
boric acid Boric acid, more specifically orthoboric acid, is a compound of boron, oxygen, and hydrogen with formula . It may also be called hydrogen borate or boracic acid. It is usually encountered as colorless crystals or a white powder, that dissolves ...
or another
neutron poison In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable eff ...
will have to be added to emergency coolant to avoid a
criticality accident A criticality accident is an accidental uncontrolled nuclear fission chain reaction. It is sometimes referred to as a critical excursion, critical power excursion, or divergent chain reaction. Any such event involves the unintended accumulation ...
. PWRs are designed to be maintained in an undermoderated state, meaning that there is room for increased water volume or density to further increase moderation, because if moderation were near saturation, then a reduction in density of the moderator/coolant could reduce neutron absorption significantly while reducing moderation only slightly, making the void coefficient positive. Also, light water is actually a somewhat stronger moderator of neutrons than heavy water, though heavy water's neutron absorption is much lower. Because of these two facts, light water reactors have a relatively small moderator volume and therefore have compact cores. One next generation design, the
supercritical water reactor The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure (i.e. greater than 22.1 MPa). The term ''critical'' in this context refers to the c ...
, is even less moderated. A less moderated neutron energy spectrum does worsen the capture/fission ratio for 235U and especially 239Pu, meaning that more fissile nuclei fail to fission on neutron absorption and instead capture the neutron to become a heavier nonfissile isotope, wasting one or more neutrons and increasing accumulation of heavy transuranic actinides, some of which have long half-lives.


Fuel

After enrichment, the
uranium dioxide Uranium dioxide or uranium(IV) oxide (), also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear rea ...
() powder is fired in a high-temperature,
sintering Clinker nodules produced by sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing ...
furnace to create hard, ceramic pellets of enriched uranium dioxide. The cylindrical pellets are then clad in a corrosion-resistant zirconium metal alloy
Zircaloy Zirconium alloys are solid solutions of zirconium or other metals, a common subgroup having the trade mark Zircaloy. Zirconium has very low absorption cross-section of thermal neutrons, high hardness, ductility and corrosion resistance. One of the ...
which are backfilled with helium to aid heat conduction and detect leakages.
Zircaloy Zirconium alloys are solid solutions of zirconium or other metals, a common subgroup having the trade mark Zircaloy. Zirconium has very low absorption cross-section of thermal neutrons, high hardness, ductility and corrosion resistance. One of the ...
is chosen because of its mechanical properties and its low absorption cross section. The finished fuel rods are grouped in fuel assemblies, called fuel bundles, that are then used to build the core of the reactor. A typical PWR has fuel assemblies of 200 to 300 rods each, and a large reactor would have about 150–250 such assemblies with 80–100 tons of uranium in all. Generally, the fuel bundles consist of fuel rods bundled 14 × 14 to 17 × 17. A PWR produces on the order of 900 to 1,600 MWe. PWR fuel bundles are about 4 meters in length. Refuelings for most commercial PWRs is on an 18–24 month cycle. Approximately one third of the core is replaced each refueling, though some more modern refueling schemes may reduce refuel time to a few days and allow refueling to occur on a shorter periodicity.


Control

In PWRs reactor power can be viewed as following steam (turbine) demand due to the reactivity feedback of the temperature change caused by increased or decreased steam flow. (See:
Negative temperature coefficient A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property ''R'' that changes when the temperature changes by ''dT'', the temperature coefficient α is def ...
.) Boron and cadmium control rods are used to maintain primary system temperature at the desired point. In order to decrease power, the operator throttles shut turbine inlet valves. This would result in less steam being drawn from the steam generators. This results in the primary loop increasing in temperature. The higher temperature causes the density of the primary reactor coolant water to decrease, allowing higher neutron speeds, thus less fission and decreased power output. This decrease of power will eventually result in primary system temperature returning to its previous steady-state value. The operator can control the steady state
operating temperature An operating temperature is the allowable temperature range of the local ambient environment at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the de ...
by addition of
boric acid Boric acid, more specifically orthoboric acid, is a compound of boron, oxygen, and hydrogen with formula . It may also be called hydrogen borate or boracic acid. It is usually encountered as colorless crystals or a white powder, that dissolves ...
and/or movement of control rods. Reactivity adjustment to maintain 100% power as the fuel is burned up in most commercial PWRs is normally achieved by varying the concentration of boric acid dissolved in the primary reactor coolant. Boron readily absorbs neutrons and increasing or decreasing its concentration in the reactor coolant will therefore affect the neutron activity correspondingly. An entire control system involving high pressure pumps (usually called the charging and letdown system) is required to remove water from the high pressure primary loop and re-inject the water back in with differing concentrations of boric acid. The reactor control rods, inserted through the reactor vessel head directly into the fuel bundles, are moved for the following reasons: to start up the reactor, to shut down the primary nuclear reactions in the reactor, to accommodate short term transients, such as changes to load on the turbine, The control rods can also be used to compensate for
nuclear poison In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable eff ...
inventory and to compensate for
nuclear fuel Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Most nuclear fuels contain heavy fissile actinide elements that are capable of undergoing ...
depletion. However, these effects are more usually accommodated by altering the primary coolant boric acid concentration. In contrast, BWRs have no boron in the reactor coolant and control the reactor power by adjusting the reactor coolant flow rate.


Advantages

PWR reactors are very stable due to their tendency to produce less power as temperatures increase; this makes the reactor easier to operate from a stability standpoint. PWR turbine cycle loop is separate from the primary loop, so the water in the secondary loop is not contaminated by radioactive materials. PWRs can passively scram the reactor in case offsite power is lost to immediately stop the primary nuclear reaction. The control rods are held by electromagnets and fall by gravity when current is lost; full insertion safely shuts down the primary nuclear reaction. PWR technology is favoured by nations seeking to develop a nuclear navy; the compact reactors fit well in nuclear submarines and other nuclear ships. PWRs are the most deployed type of reactor globally, allowing for a wide range of suppliers of new plants and parts for existing plants. Due to long experience with their operation they are the closest thing to
mature technology A mature technology is a technology that has been in use for long enough that most of its initial faults and inherent problems have been removed or reduced by further development. In some contexts, it may also refer to technology that has not se ...
that exists in nuclear energy. PWRs - depending on type - can be fueled with MOX-fuel and/or the Russian
Remix Fuel Remix Fuel was developed in Russia to make use of Mixed Recycled Uranium and Plutonium from spent nuclear fuel to manufacture fresh fuel suitable for widespread use in Russian reactor designs. Compared to "conventional" MOX-fuel MOX or Mixed Oxid ...
(which has a lower and a higher content than "regular" U/Pu MOX-fuel) allowing for a (partially) closed nuclear fuel cycle Water is a nontoxic, transparent, chemically unreactive (by comparison with e.g. NaK) coolant that is liquid at room temperature which makes visual inspection and maintenance easier. It is also easy and cheap to obtain unlike heavy water or even nuclear graphite Compared to reactors operating on natural uranium, PWRs can achieve a relatively high
burnup In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per init ...
. A typical PWR will exchange a quarter to a third of its fuel load every 18-24 months and have maintenance and inspection, that requires the reactor to be shut down, scheduled for this window. While more uranium ore is consumed per unit of electricity produced than in a natural uranium fueled reactor, the amount of spent fuel is less with the balance being depleted uranium whose radiological danger is lower than that of natural uranium.


Disadvantages

The coolant water must be highly pressurized to remain liquid at high temperatures. This requires high strength piping and a heavy pressure vessel and hence increases construction costs. The higher pressure can increase the consequences of a loss-of-coolant accident. The
reactor pressure vessel A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core. Classification of nuclear power reactors Russian Soviet era RBMK reactors have each fuel a ...
is manufactured from ductile steel but, as the plant is operated, neutron flux from the reactor causes this steel to become less ductile. Eventually the ductility of the steel will reach limits determined by the applicable boiler and pressure vessel standards, and the pressure vessel must be repaired or replaced. This might not be practical or economic, and so determines the life of the plant. Additional high pressure components such as reactor coolant pumps, pressurizer, and steam generators are also needed. This also increases the capital cost and complexity of a PWR power plant. The high temperature water coolant with
boric acid Boric acid, more specifically orthoboric acid, is a compound of boron, oxygen, and hydrogen with formula . It may also be called hydrogen borate or boracic acid. It is usually encountered as colorless crystals or a white powder, that dissolves ...
dissolved in it is corrosive to carbon steel (but not stainless steel); this can cause radioactive corrosion products to circulate in the primary coolant loop. This not only limits the lifetime of the reactor, but the systems that filter out the corrosion products and adjust the boric acid concentration add significantly to the overall cost of the reactor and to radiation exposure. In one instance, this has resulted in severe corrosion to control rod drive mechanisms when the boric acid solution leaked through the seal between the mechanism itself and the primary system. Due to the requirement to load a pressurized water reactor's primary coolant loop with boron, undesirable radioactive secondary tritium production in the water is over 25 times greater than in boiling water reactors of similar power, owing to the latter's absence of the neutron moderating element in its coolant loop. The tritium is created by the absorption of a fast neutron in the nucleus of a boron-10 atom which subsequently splits into a lithium-7 and tritium atom. Pressurized water reactors annually emit several hundred Curie (unit), curies of tritium to the environment as part of normal operation. Natural uranium is only 0.7% uranium-235, the isotope necessary for thermal reactors. This makes it necessary to enrich the uranium fuel, which significantly increases the costs of fuel production. Compared to reactors operating on natural uranium, less energy is generated per unit of uranium ore even though a higher burnup can be achieved. Nuclear reprocessing can "stretch" the fuel supply of both natural uranium and enriched uranium reactors but is virtually only practiced for light water reactors operating with lightly enriched fuel as spent fuel from e.g. CANDU reactors is very low in fissile material. Because water acts as a neutron moderator, it is not possible to build a fast-neutron reactor with a PWR design. A reduced moderation water reactor may however achieve a breeder reactor#Breeding ratio, breeding ratio greater than unity, though this reactor design has disadvantages of its own. Spent fuel from a PWR usually has a higher content of fissile material than natural uranium. Without nuclear reprocessing, this fissile material cannot be used as fuel in a PWR. It can, however, be used in a
CANDU The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide ( heavy water) moderator and its use of (originally, natural) uranium fuel. C ...
with only minimal reprocessing in a process called "DUPIC" - Direct Use of spent PWR fuel in CANDU. Thermal efficiency, while better than for
boiling water reactor A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is a design different from a Soviet graphite-moderated RBMK. It is the second most common type of electricity-generating nuc ...
s, cannot achieve the values of reactors with higher operating temperatures such as those cooled with high temperature gases, liquid metals or molten salts. Similarly process heat drawn from a PWR is not suitable for most industrial applications as those require temperatures in excess of . Radiolysis and certain accident scenarios which involve interactions between hot steam and zircalloy cladding can produce hydrogen from the cooling water leading to hydrogen explosions as a potential accident scenario. During the Fukushima nuclear accident a hydrogen explosion damaging the containment building was a major concern. Some reactors contain catalytic recombiners which let the hydrogen react with ambient oxygen in a non-explosive fashion.


See also

*Boiling water reactor *List of PWR reactors *Nuclear safety systems *APR-1400, KEPCO Advanced Power Reactor 1400 (APR-1400) *VVER-1200, Rosatom VVER-1200 (or AES-2006) *EPR (nuclear reactor), Areva EPR *AP1000, Westinghouse Advanced Passive 1000 (AP1000) *Hualong One, Chinese Hualong One (or HPR1000) *IPWR-900, Indian IPWR-900


Notes


References

* * * * * *


External links


Nuclear Science and Engineering
at MIT OpenCourseWare.
Document archives
at the website of the United States Nuclear Regulatory Commission.
Operating Principles of a Pressurized Water Reactor
(YouTube video).
Fuel Consumption of a Pressurized Water Reactor
{{DEFAULTSORT:Pressurized Water Reactor Pressurized water reactors, Light water reactors Nuclear power reactor types Articles containing video clips