Poincaré Conjecture
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
geometric topology In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topology may be said to have originated i ...
, the Poincaré conjecture (, , ) is a
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ...
about the
characterization Characterization or characterisation is the representation of persons (or other beings or creatures) in narrative and dramatic works. The term character development is sometimes used as a synonym. This representation may include direct methods ...
of the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensi ...
, which is the
hypersphere In mathematics, an -sphere or a hypersphere is a topological space that is homeomorphic to a ''standard'' -''sphere'', which is the set of points in -dimensional Euclidean space that are situated at a constant distance from a fixed point, cal ...
that bounds the
unit ball Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (alb ...
in
four-dimensional A four-dimensional space (4D) is a mathematical extension of the concept of three-dimensional or 3D space. Three-dimensional space is the simplest possible abstraction of the observation that one only needs three numbers, called ''dimensions'', ...
space. Originally conjectured by
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...
in 1904, the
Grigori Perelman Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
's theorem concerns spaces that locally look like ordinary
three-dimensional space Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position (geometry), position of an element (i.e., Point (m ...
but which are finite in extent. Poincaré hypothesized that if such a space has the additional property that each
loop Loop or LOOP may refer to: Brands and enterprises * Loop (mobile), a Bulgarian virtual network operator and co-founder of Loop Live * Loop, clothing, a company founded by Carlos Vasquez in the 1990s and worn by Digable Planets * Loop Mobile, an ...
in the space can be continuously tightened to a point, then it is necessarily a three-dimensional sphere. Attempts to resolve the conjecture drove much progress in the field of geometric topology during the 20th century. The Perelman's proof built upon Richard S. Hamilton's ideas of using the
Ricci flow In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analo ...
to solve the problem. By developing a number of breakthrough new techniques and results in the theory of Ricci flow,
Grigori Perelman Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
was able to prove the Conjecture, and more than just the Conjecture. In papers posted to the
arXiv arXiv (pronounced "archive"—the X represents the Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not peer review. It consists of ...
repository in 2002 and 2003, Perelman presented his work proving the Poincaré conjecture (and the more powerful
geometrization conjecture In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimens ...
of
William Thurston William Paul Thurston (October 30, 1946August 21, 2012) was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds. Thurston ...
). Over the next several years, several mathematicians studied his papers and produced detailed formulations of his work. Hamilton and Perelman's work on the conjecture is widely recognized as a milestone of mathematical research. Hamilton was recognized with the
Shaw Prize The Shaw Prize is an annual award presented by the Shaw Prize Foundation. Established in 2002 in Hong Kong, it honours "individuals who are currently active in their respective fields and who have recently achieved distinguished and signifi ...
and the
Leroy P. Steele Prize for Seminal Contribution to Research The Leroy P. Steele Prizes are awarded every year by the American Mathematical Society, for distinguished research work and writing in the field of mathematics. Since 1993, there has been a formal division into three categories. The prizes have b ...
. The journal ''
Science Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earliest archeological evidence for ...
'' marked Perelman's proof of the Poincaré conjecture as the scientific
Breakthrough of the Year The Breakthrough of the Year is an annual award for the most significant development in scientific research made by the AAAS journal ''Science,'' an academic journal covering all branches of science. Originating in 1989 as the ''Molecule of the Ye ...
in 2006. The
Clay Mathematics Institute The Clay Mathematics Institute (CMI) is a private, non-profit foundation (nonprofit), foundation dedicated to increasing and disseminating mathematics, mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address i ...
, having included the Poincaré conjecture in their well-known
Millennium Prize Problem The Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US$1 million prize for the first correct solution to each problem. According ...
list, offered Perelman their prize of
US$ The United States dollar (symbol: $; code: USD; also abbreviated US$ or U.S. Dollar, to distinguish it from other dollar-denominated currencies; referred to as the dollar, U.S. dollar, American dollar, or colloquially buck) is the official ...
1 million for the conjecture's resolution. He declined the award, saying modestly that Hamilton's contribution had been equal to his own. Google Translated archived link a

(archived 2014-04-20)


History


Poincaré's question

Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...
was working on the foundations of topology—what would later be called
combinatorial topology In mathematics, combinatorial topology was an older name for algebraic topology, dating from the time when topological invariants of spaces (for example the Betti numbers) were regarded as derived from combinatorial decompositions of spaces, such ...
and then
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
. He was particularly interested in what topological properties characterized a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
. Poincaré claimed in 1900 that
homology Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor * Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chrom ...
, a tool he had devised based on prior work by
Enrico Betti Enrico Betti Glaoui (21 October 1823 – 11 August 1892) was an Italian mathematician, now remembered mostly for his 1871 paper on topology that led to the later naming after him of the Betti numbers. He worked also on the theory of equations, giv ...
, was sufficient to tell if a
3-manifold In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds lo ...
was a
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensi ...
. However, in a 1904 paper, he described a counterexample to this claim, a space now called the Poincaré homology sphere. The Poincaré sphere was the first example of a
homology sphere Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor *Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chromo ...
, a manifold that had the same homology as a sphere, of which many others have since been constructed. To establish that the Poincaré sphere was different from the 3-sphere, Poincaré introduced a new
topological invariant In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces ...
, the
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
, and showed that the Poincaré sphere had a
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
of order 120, while the 3-sphere had a trivial fundamental group. In this way, he was able to conclude that these two spaces were, indeed, different. In the same paper, Poincaré wondered whether a 3-manifold with the
homology Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor * Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chrom ...
of a 3-sphere and also trivial fundamental group had to be a 3-sphere. Poincaré's new condition—i.e., "trivial fundamental group"—can be restated as "every loop can be shrunk to a point." The original phrasing was as follows: Poincaré never declared whether he believed this additional condition would characterize the 3-sphere, but nonetheless, the statement that it does is known as the Poincaré conjecture. Here is the standard form of the conjecture: Note that "closed" here means, as customary in this area, the condition of being
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
in terms of set topology, and also without
boundary Boundary or Boundaries may refer to: * Border, in political geography Entertainment *Boundaries (2016 film), ''Boundaries'' (2016 film), a 2016 Canadian film *Boundaries (2018 film), ''Boundaries'' (2018 film), a 2018 American-Canadian road trip ...
(3-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
is an example of a simply connected 3-manifold not homeomorphic to the 3-sphere; but it is not compact and therefore not a counter-example).


Solutions

In the 1930s,
J. H. C. Whitehead John Henry Constantine Whitehead FRS (11 November 1904 – 8 May 1960), known as Henry, was a British mathematician and was one of the founders of homotopy theory. He was born in Chennai (then known as Madras), in India, and died in Princeton, ...
claimed a proof but then retracted it. In the process, he discovered some examples of simply-connected (indeed contractible, i.e. homotopically equivalent to a point) non-compact 3-manifolds not homeomorphic to \R^3, the prototype of which is now called the
Whitehead manifold In mathematics, the Whitehead manifold is an open 3-manifold that is contractible, but not homeomorphic to \R^3. discovered this puzzling object while he was trying to prove the Poincaré conjecture, correcting an error in an earlier paper where ...
. In the 1950s and 1960s, other mathematicians attempted proofs of the conjecture only to discover that they contained flaws. Influential mathematicians such as
Georges de Rham Georges de Rham (; 10 September 1903 – 9 October 1990) was a Swiss mathematician, known for his contributions to differential topology. Biography Georges de Rham was born on 10 September 1903 in Roche, a small village in the canton of Vaud in ...
, R. H. Bing,
Wolfgang Haken Wolfgang Haken (June 21, 1928 – October 2, 2022) was a German American mathematician who specialized in topology, in particular 3-manifolds. Biography Haken was born in Berlin, Germany. His father was Werner Haken, a physicist who had Max ...
, Edwin E. Moise, and
Christos Papakyriakopoulos Christos Dimitriou Papakyriakopoulos (), commonly known as Papa (Greek: Χρήστος Δημητρίου Παπακυριακόπουλος ; June 29, 1914 – June 29, 1976), was a Greek mathematician specializing in geometric topology. Early l ...
attempted to prove the conjecture. In 1958, Bing proved a weak version of the Poincaré conjecture: if every simple closed curve of a compact 3-manifold is contained in a 3-ball, then the manifold is homeomorphic to the 3-sphere. Bing also described some of the pitfalls in trying to prove the Poincaré conjecture. Włodzimierz Jakobsche showed in 1978 that, if the
Bing–Borsuk conjecture In mathematics, the Bing–Borsuk conjecture states that every n-dimensional homogeneous absolute neighborhood retract space is a topological manifold. The conjecture has been proved for dimensions 1 and 2, and it is known that the 3-dimensional v ...
is true in dimension 3, then the Poincaré conjecture must also be true. Over time, the conjecture gained the reputation of being particularly tricky to tackle.
John Milnor John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Uni ...
commented that sometimes the errors in false proofs can be "rather subtle and difficult to detect." Work on the conjecture improved understanding of 3-manifolds. Experts in the field were often reluctant to announce proofs and tended to view any such announcement with skepticism. The 1980s and 1990s witnessed some well-publicized fallacious proofs (which were not actually published in
peer-reviewed Peer review is the evaluation of work by one or more people with similar competencies as the producers of the work (peers). It functions as a form of self-regulation by qualified members of a profession within the relevant field. Peer review ...
form). An exposition of attempts to prove this conjecture can be found in the non-technical book ''Poincaré's Prize'' by
George Szpiro George Geza Szpiro (born 18 February 1950 in Vienna) is an Israeli–Swiss author, journalist, and mathematician. He has written articles and books on popular mathematics and related topics. Life and career Szpiro was born in Vienna in 1950, and mo ...
.


Dimensions

The classification of closed surfaces gives an affirmative answer to the analogous question in two dimensions. For dimensions greater than three, one can pose the Generalized Poincaré conjecture: is a homotopy ''n''-sphere homeomorphic to the ''n''-sphere? A stronger assumption is necessary; in dimensions four and higher there are simply-connected, closed manifolds which are not
homotopy equivalent In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deforma ...
to an ''n''-sphere. Historically, while the conjecture in dimension three seemed plausible, the generalized conjecture was thought to be false. In 1961,
Stephen Smale Stephen Smale (born July 15, 1930) is an American mathematician, known for his research in topology, dynamical systems and mathematical economics. He was awarded the Fields Medal in 1966 and spent more than three decades on the mathematics facult ...
shocked mathematicians by proving the Generalized Poincaré conjecture for dimensions greater than four and extended his techniques to prove the fundamental
h-cobordism theorem In geometric topology and differential topology, an (''n'' + 1)-dimensional cobordism ''W'' between ''n''-dimensional manifolds ''M'' and ''N'' is an ''h''-cobordism (the ''h'' stands for homotopy equivalence) if the inclusion maps : M ...
. In 1982,
Michael Freedman Michael Hartley Freedman (born April 21, 1951) is an American mathematician, at Microsoft Station Q, a research group at the University of California, Santa Barbara. In 1986, he was awarded a Fields Medal for his work on the 4-dimensional gene ...
proved the Poincaré conjecture in four dimensions. Freedman's work left open the possibility that there is a smooth four-manifold homeomorphic to the four-sphere which is not
diffeomorphic In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an Inverse function, invertible Function (mathematics), function that maps one differentiable manifold to another such that both the function and its inverse function ...
to the four-sphere. This so-called smooth Poincaré conjecture, in dimension four, remains open and is thought to be very difficult.
Milnor John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Univ ...
's
exotic sphere In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold ''M'' that is homeomorphic but not diffeomorphic to the standard Euclidean ''n''-sphere. That is, ''M'' is a sphere from the point of view of al ...
s show that the smooth Poincaré conjecture is false in dimension seven, for example. These earlier successes in higher dimensions left the case of three dimensions in limbo. The Poincaré conjecture was essentially true in both dimension four and all higher dimensions for substantially different reasons. In dimension three, the conjecture had an uncertain reputation until the
geometrization conjecture In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimens ...
put it into a framework governing all 3-manifolds. John Morgan wrote:


Hamilton's program and solution

Hamilton's program was started in his 1982 paper in which he introduced the
Ricci flow In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analo ...
on a manifold and showed how to use it to prove some special cases of the Poincaré conjecture. In the following years, he extended this work but was unable to prove the conjecture. The actual solution was not found until
Grigori Perelman Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
published his papers. In late 2002 and 2003, Perelman posted three papers on the
arXiv arXiv (pronounced "archive"—the X represents the Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not peer review. It consists of ...
. In these papers, he sketched a proof of the Poincaré conjecture and a more general conjecture,
Thurston's geometrization conjecture In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensi ...
, completing the Ricci flow program outlined earlier by Richard S. Hamilton. From May to July 2006, several groups presented papers that filled in the details of Perelman's proof of the Poincaré conjecture, as follows: *
Bruce Kleiner Bruce Alan Kleiner is an American mathematician, working in differential geometry and topology and geometric group theory. He received his Ph.D. in 1990 from the University of California, Berkeley. His advisor was Wu-Yi Hsiang. Kleiner is a p ...
and John W. Lott posted a paper on the arXiv in May 2006 which filled in the details of Perelman's proof of the geometrization conjecture, following partial versions which had been publicly available since 2003. Their manuscript was published in the journal "Geometry and Topology" in 2008. A small number of corrections were made in 2011 and 2013; for instance, the first version of their published paper made use of an incorrect version of Hamilton's compactness theorem for Ricci flow. * Huai-Dong Cao and
Xi-Ping Zhu Zhu Xiping (born 1962 in Shixing, Guangdong) is a Chinese mathematician. He is a professor of Mathematics at Sun Yat-sen University, China. Poincaré conjecture In 2002 and 2003, Grigori Perelman posted three preprints to the arXiv claiming a r ...
published a paper in the June 2006 issue of the ''
Asian Journal of Mathematics ''The Asian Journal of Mathematics'' is a peer-reviewed scientific journal covering all areas of pure and theoretical applied mathematics Applied mathematics is the application of mathematical methods by different fields such as physics, ...
'' with an exposition of the complete proof of the Poincaré and geometrization conjectures. The opening paragraph of their paper stated :Some observers interpreted Cao and Zhu as taking credit for Perelman's work. They later posted a revised version, with new wording, on the arXiv. In addition, a page of their exposition was essentially identical to a page in one of Kleiner and Lott's early publicly available drafts; this was also amended in the revised version, together with an apology by the journal's editorial board. * John Morgan and Gang Tian posted a paper on the arXiv in July 2006 which gave a detailed proof of just the Poincaré Conjecture (which is somewhat easier than the full geometrization conjecture) and expanded this to a book. All three groups found that the gaps in Perelman's papers were minor and could be filled in using his own techniques. On August 22, 2006, the ICM awarded Perelman the
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award ho ...
for his work on the Ricci flow, but Perelman refused the medal. John Morgan spoke at the ICM on the Poincaré conjecture on August 24, 2006, declaring that "in 2003, Perelman solved the Poincaré Conjecture." In December 2006, the journal ''
Science Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earliest archeological evidence for ...
'' honored the proof of Poincaré conjecture as the
Breakthrough of the Year The Breakthrough of the Year is an annual award for the most significant development in scientific research made by the AAAS journal ''Science,'' an academic journal covering all branches of science. Originating in 1989 as the ''Molecule of the Ye ...
and featured it on its cover.


Ricci flow with surgery

Hamilton's program for proving the Poincaré conjecture involves first putting a
Riemannian metric In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ''T ...
on the unknown simply connected closed 3-manifold. The basic idea is to try to "improve" this metric; for example, if the metric can be improved enough so that it has constant positive curvature, then according to classical results in Riemannian geometry, it must be the 3-sphere. Hamilton prescribed the "
Ricci flow In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analo ...
equations" for improving the metric; :\partial_t g_=-2 R_ where ''g'' is the metric and ''R'' its Ricci curvature, and one hopes that, as the time ''t'' increases, the manifold becomes easier to understand. Ricci flow expands the negative curvature part of the manifold and contracts the positive curvature part. In some cases, Hamilton was able to show that this works; for example, his original breakthrough was to show that if the Riemannian manifold has positive Ricci curvature everywhere, then the above procedure can only be followed for a bounded interval of parameter values, t\in [0,T) with T<\infty, and more significantly, that there are numbers c_t such that as t\nearrow T, the Riemannian metrics c_tg(t) smoothly converge to one of constant positive curvature. According to classical Riemannian geometry, the only simply-connected compact manifold which can support a Riemannian metric of constant positive curvature is the sphere. So, in effect, Hamilton showed a special case of the Poincaré conjecture: ''if'' a compact simply-connected 3-manifold supports a Riemannian metric of positive Ricci curvature, then it must be diffeomorphic to the 3-sphere. If, instead, one only has an arbitrary Riemannian metric, the Ricci flow equations must lead to more complicated singularities. Perelman's major achievement was to show that, if one takes a certain perspective, if they appear in finite time, these singularities can only look like shrinking spheres or cylinders. With a quantitative understanding of this phenomenon, he cuts the manifold along the singularities, splitting the manifold into several pieces and then continues with the Ricci flow on each of these pieces. This procedure is known as Ricci flow with surgery. Perelman provided a separate argument based on curve shortening flow to show that, on a simply-connected compact 3-manifold, any solution of the Ricci flow with surgery becomes extinct in finite time. An alternative argument, based on the min-max theory of minimal surfaces and geometric measure theory, was provided by
Tobias Colding Tobias Holck Colding (born 1963) is a Danish mathematician working on geometric analysis, and low-dimensional topology. He is the great grandchild of Ludwig August Colding. Biography He was born in Copenhagen, Denmark, to Torben Holck Colding ...
and
William Minicozzi William Philip Minicozzi II is an American mathematician. He was born in Bryn Mawr, Pennsylvania, Bryn Mawr, Pennsylvania, in 1967. Career Minicozzi graduated from Princeton University in 1990 and received his Ph.D. from Stanford University in 199 ...
. Hence, in the simply-connected context, the above finite-time phenomena of Ricci flow with surgery is all that is relevant. In fact, this is even true if the fundamental group is a free product of finite groups and cyclic groups. This condition on the fundamental group turns out to be necessary and sufficient for finite time extinction. It is equivalent to saying that the prime decomposition of the manifold has no acyclic components and turns out to be equivalent to the condition that all geometric pieces of the manifold have geometries based on the two Thurston geometries ''S''2×R and ''S''3. In the context that one makes no assumption about the fundamental group whatsoever, Perelman made a further technical study of the limit of the manifold for infinitely large times, and in so doing, proved Thurston's geometrization conjecture: at large times, the manifold has a thick-thin decomposition, whose thick piece has a hyperbolic structure, and whose thin piece is a
graph manifold In topology, a graph manifold (in German: Graphenmannigfaltigkeit) is a 3-manifold which is obtained by gluing some circle bundles. They were discovered and classified by the German topologist Friedhelm Waldhausen in 1967. This definition allows a ...
. Due to Perelman's and Colding and Minicozzi's results, however, these further results are unnecessary in order to prove the Poincaré conjecture.


Solution

On November 13, 2002, Russian mathematician
Grigori Perelman Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
posted the first of a series of three
eprints EPrints is a free and open-source software package for building open access repositories that are compliant with the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH). It shares many of the features commonly seen in document ...
on
arXiv arXiv (pronounced "archive"—the X represents the Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not peer review. It consists of ...
outlining a solution of the Poincaré conjecture. Perelman's proof uses a modified version of a
Ricci flow In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analo ...
program developed by Richard S. Hamilton. In August 2006, Perelman was awarded, but declined, the
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award ho ...
(worth $15,000 CAD) for his work on the Ricci flow. On March 18, 2010, the
Clay Mathematics Institute The Clay Mathematics Institute (CMI) is a private, non-profit foundation (nonprofit), foundation dedicated to increasing and disseminating mathematics, mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address i ...
awarded Perelman the $1 million Millennium Prize in recognition of his proof. Perelman rejected that prize as well. Perelman proved the conjecture by deforming the manifold using the Ricci flow (which behaves similarly to the
heat equation In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for t ...
that describes the diffusion of heat through an object). The Ricci flow usually deforms the manifold towards a rounder shape, except for some cases where it stretches the manifold apart from itself towards what are known as singularities. Perelman and Hamilton then chop the manifold at the singularities (a process called "surgery"), causing the separate pieces to form into ball-like shapes. Major steps in the proof involve showing how manifolds behave when they are deformed by the Ricci flow, examining what sort of singularities develop, determining whether this surgery process can be completed, and establishing that the surgery need not be repeated infinitely many times. The first step is to deform the manifold using the
Ricci flow In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analo ...
. The Ricci flow was defined by Richard S. Hamilton as a way to deform manifolds. The formula for the Ricci flow is an imitation of the
heat equation In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for t ...
, which describes the way heat flows in a solid. Like the heat flow, Ricci flow tends towards uniform behavior. Unlike the heat flow, the Ricci flow could run into singularities and stop functioning. A singularity in a manifold is a place where it is not differentiable: like a corner or a cusp or a pinching. The Ricci flow was only defined for smooth differentiable manifolds. Hamilton used the Ricci flow to prove that some compact manifolds were
diffeomorphic In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an Inverse function, invertible Function (mathematics), function that maps one differentiable manifold to another such that both the function and its inverse function ...
to spheres, and he hoped to apply it to prove the Poincaré Conjecture. He needed to understand the singularities. Hamilton created a list of possible singularities that could form, but he was concerned that some singularities might lead to difficulties. He wanted to cut the manifold at the singularities and paste in caps and then run the Ricci flow again, so he needed to understand the singularities and show that certain kinds of singularities do not occur. Perelman discovered the singularities were all very simple: essentially three-dimensional cylinders made out of spheres stretched out along a line. An ordinary cylinder is made by taking circles stretched along a line. Perelman proved this using something called the "Reduced Volume," which is closely related to an
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
of a certain
elliptic equation An elliptic equation can mean: * The equation of an ellipse * An elliptic curve, describing the relationships between invariants of an ellipse * A differential equation with an elliptic operator * An elliptic partial differential equation Second ...
. Sometimes, an otherwise complicated operation reduces to multiplication by a
scalar Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers * Scalar (physics), a physical quantity that can be described by a single element of a number field such ...
(a number). Such numbers are called eigenvalues of that operation. Eigenvalues are closely related to vibration frequencies and are used in analyzing a famous problem: can you hear the shape of a drum? Essentially, an eigenvalue is like a note being played by the manifold. Perelman proved this note goes up as the manifold is deformed by the Ricci flow. This helped him eliminate some of the more troublesome singularities that had concerned Hamilton, particularly the cigar soliton solution, which looked like a strand sticking out of a manifold with nothing on the other side. In essence, Perelman showed that all the strands that form can be cut and capped and none stick out on one side only. Completing the proof, Perelman takes any compact, simply connected, three-dimensional manifold without boundary and starts to run the Ricci flow. This deforms the manifold into round pieces with strands running between them. He cuts the strands and continues deforming the manifold until, eventually, he is left with a collection of round three-dimensional spheres. Then, he rebuilds the original manifold by connecting the spheres together with three-dimensional cylinders, morphs them into a round shape, and sees that, despite all the initial confusion, the manifold was, in fact, homeomorphic to a sphere. One immediate question posed was how one could be sure that infinitely many cuts are not necessary. This was raised due to the cutting potentially progressing forever. Perelman proved this cannot happen by using
minimal surfaces In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below). The term "minimal surface" is used because these surfaces originally arose as surfaces that ...
on the manifold. A minimal surface is essentially a soap film. Hamilton had shown that the area of a minimal surface decreases as the manifold undergoes Ricci flow. Perelman verified what happened to the area of the minimal surface when the manifold was sliced. He proved that, eventually, the area is so small that any cut after the area is that small can only be chopping off three-dimensional spheres and not more complicated pieces. This is described as a battle with a Hydra by Sormani in Szpiro's book cited below. This last part of the proof appeared in Perelman's third and final paper on the subject.


References


Further reading

* * * * * * * * * *


External links


"The Poincaré Conjecture"
nbsp;–
BBC Radio 4 BBC Radio 4 is a British national radio station owned and operated by the BBC that replaced the BBC Home Service in 1967. It broadcasts a wide variety of spoken-word programmes, including news, drama, comedy, science and history from the BBC' ...
programme ''
In Our Time In Our Time may refer to: * ''In Our Time'' (1944 film), a film starring Ida Lupino and Paul Henreid * ''In Our Time'' (1982 film), a Taiwanese anthology film featuring director Edward Yang; considered the beginning of the "New Taiwan Cinema" * ''In ...
'', 2 November 2006. Contributors June Barrow-Green, Lecturer in the History of Mathematics at the
Open University The Open University (OU) is a British public research university and the largest university in the United Kingdom by number of students. The majority of the OU's undergraduate students are based in the United Kingdom and principally study off- ...
, Ian Stewart, Professor of Mathematics at the
University of Warwick The University of Warwick ( ; abbreviated as ''Warw.'' in post-nominal letters) is a public research university on the outskirts of Coventry between the West Midlands (county), West Midlands and Warwickshire, England. The university was founded i ...
,
Marcus du Sautoy Marcus Peter Francis du Sautoy (; born 26 August 1965) is a British mathematician, Simonyi Professor for the Public Understanding of Science at the University of Oxford, Fellow of New College, Oxford and author of popular mathematics and popu ...
, Professor of Mathematics at the
University of Oxford , mottoeng = The Lord is my light , established = , endowment = £6.1 billion (including colleges) (2019) , budget = £2.145 billion (2019–20) , chancellor ...
, and presenter
Melvyn Bragg Melvyn Bragg, Baron Bragg, (born 6 October 1939), is an English broadcaster, author and parliamentarian. He is best known for his work with ITV as editor and presenter of ''The South Bank Show'' (1978–2010), and for the BBC Radio 4 documenta ...
. {{DEFAULTSORT:Poincare conjecture Geometric topology 3-manifolds Theorems in topology Millennium Prize Problems
Conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 19 ...
Conjectures that have been proved 1904 introductions