Pyrolyse 3-Ethynylcycloprop-1-en
   HOME

TheInfoList



OR:

The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of
chemical composition A chemical composition specifies the identity, arrangement, and ratio of the elements making up a compound. Chemical formulas can be used to describe the relative amounts of elements present in a compound. For example, the chemical formula for ...
. The word is coined from the Greek-derived elements ''pyro'' "fire", "heat", "fever" and ''
lysis Lysis ( ) is the breaking down of the membrane of a cell, often by viral, enzymic, or osmotic (that is, "lytic" ) mechanisms that compromise its integrity. A fluid containing the contents of lysed cells is called a ''lysate''. In molecular bio ...
'' "separating". Pyrolysis is most commonly used in the treatment of
organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ Chemistry * Organic matter, matter that has come from a once-living organism, is capable of decay or is the product ...
materials. It is one of the processes involved in charring wood.''Burning of wood''
, InnoFireWood's website. Accessed on 2010-02-06.
In general, pyrolysis of organic substances produces volatile products and leaves
char Char may refer to: People *Char Fontane, American actress *Char Margolis, American spiritualist * René Char (1907–1988), French poet *The Char family of Colombia: ** Fuad Char, Colombian senator ** Alejandro Char Chaljub, mayor of Barranquilla ...
, a carbon-rich solid residue. Extreme pyrolysis, which leaves mostly carbon as the residue, is called carbonization. Pyrolysis is considered the first step in the processes of gasification or combustion. The process is used heavily in the
chemical industry The chemical industry comprises the companies that produce industrial chemicals. Central to the modern world economy, it converts raw materials (oil, natural gas, air, water, metals, and minerals) into more than 70,000 different products. The ...
, for example, to produce
ethylene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon-carbon double bonds). Ethylene i ...
, many forms of carbon, and other chemicals from petroleum, coal, and even wood, to produce coke from coal. It is used also in the conversion of natural gas (primarily methane) into hydrogen gas and solid carbon char, recently on an industrial scale. Aspirational applications of pyrolysis would convert
biomass Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bi ...
into
syngas Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principly used for producing ammonia or methanol. Syngas is combustible and can be used as ...
and biochar, waste plastics back into usable oil, or waste into safely disposable substances.


Terminology

Pyrolysis is one of the various types of chemical degradation processes that occur at higher temperatures (above the boiling point of water or other solvents). It differs from other processes like combustion and hydrolysis in that it usually does not involve the addition of other reagents such as oxygen (O2, in combustion) or water (in hydrolysis). Pyrolysis produces solids (
char Char may refer to: People *Char Fontane, American actress *Char Margolis, American spiritualist * René Char (1907–1988), French poet *The Char family of Colombia: ** Fuad Char, Colombian senator ** Alejandro Char Chaljub, mayor of Barranquilla ...
), condensable liquids ( tar), and uncondensing/permanent gasses.


Types

Specific types of pyrolysis include: * Carbonization, the complete pyrolysis of organic matter, which usually leaves a solid residue that consists mostly of elemental carbon. *
Methane pyrolysis The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements ''pyr ...
, the direct conversion of methane to hydrogen fuel and separable solid carbon, sometimes using molten metal catalysts. * Hydrous pyrolysis, in the presence of superheated water or steam, producing hydrogen and substantial atmospheric carbon dioxide. * Dry distillation, as in the original production of
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
from sulfates. * Destructive distillation, as in the manufacture of
charcoal Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, cal ...
, coke and
activated carbon Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that increase the surface area avail ...
. * Caramelization of sugars. * High-temperature
cooking Cooking, cookery, or culinary arts is the art, science and craft of using heat to Outline of food preparation, prepare food for consumption. Cooking techniques and ingredients vary widely, from grilling food over an open fire to using electric ...
processes such as
roasting Roasting is a cooking method that uses dry heat where hot air covers the food, cooking it evenly on all sides with temperatures of at least from an open flame, oven, or other heat source. Roasting can enhance the flavor through caramelization ...
,
frying Frying is the cooking of food in oil or another fat. Similar to sautéing, pan-fried foods are generally turned over once or twice during cooking to make sure that the food is well-made, using tongs or a spatula, while sautéed foods are cooked ...
, toasting, and
grilling Grilling is a form of cooking that involves dry heat applied to the surface of food, commonly from above, below or from the side. Grilling usually involves a significant amount of direct, radiant heat, and tends to be used for cooking meat a ...
. * Charcoal burning, the production of charcoal. * Tar production by destructive distillation of wood in
tar kiln Tar is a dark brown or black viscous liquid of hydrocarbons and free carbon, obtained from a wide variety of organic materials through destructive distillation. Tar can be produced from coal, wood, petroleum, or peat. "a dark brown or black bi ...
s. * Cracking of heavier hydrocarbons into lighter ones, as in
oil refining An oil refinery or petroleum refinery is an industrial process plant where petroleum (crude oil) is transformed and refined into useful products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, liquefie ...
. * Thermal depolymerization, which breaks down plastics and other polymers into monomers and
oligomer In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
s. *
Ceramization Polymer derived ceramics (PDCs) are ceramic materials formed by the pyrolysis of preceramic polymers, usually under inert atmosphere. The compositions of PDCs most commonly include silicon carbide (SiC), silicon oxycarbide (SiOxCy), silicon nitride ...
involving the formation of polymer derived ceramics from preceramic polymers under an
inert atmosphere An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. The noble gases often do not react with many substances and were historically referred to ...
. * Catagenesis, the natural conversion of buried organic matter to
fossil fuels A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels ...
. *
Flash vacuum pyrolysis Flash vacuum pyrolysis (FVP) is a technique in organic synthesis. It entails heating a precursor molecule intensely and briefly. Two key parameters are the temperature and duration (or residence time), which are adjusted to optimize yield, convers ...
, used in
organic synthesis Organic synthesis is a special branch of chemical synthesis and is concerned with the intentional construction of organic compounds. Organic molecules are often more complex than inorganic compounds, and their synthesis has developed into one o ...
.


General processes and mechanisms

Pyrolysis generally consists in heating the material above its
decomposition temperature Thermal decomposition, or thermolysis, is a chemical decomposition caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic as heat is req ...
, breaking chemical bonds in its molecules. The fragments usually become smaller molecules, but may combine to produce residues with larger molecular mass, even amorphous covalent solids. In many settings, some amounts of oxygen, water, or other substances may be present, so that combustion, hydrolysis, or other chemical processes may occur besides pyrolysis proper. Sometimes those chemicals are added intentionally, as in the burning of
firewood Firewood is any wooden material that is gathered and used for fuel. Generally, firewood is not highly processed and is in some sort of recognizable log or branch form, compared to other forms of wood fuel like pellets or chips. Firewood can ...
, in the traditional manufacture of
charcoal Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, cal ...
, and in the
steam cracking Steam cracking is a petrochemical process in which saturated hydrocarbons are broken down into smaller, often unsaturated, hydrocarbons. It is the principal industrial method for producing the lighter alkenes (or commonly olefins), including ethe ...
of crude oil. Conversely, the starting material may be heated in a vacuum or in an
inert atmosphere An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. The noble gases often do not react with many substances and were historically referred to ...
to avoid chemical side reactions (such as combustion or hydrolysis). Pyrolysis in a vacuum also lowers the
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envir ...
of the byproducts, improving their recovery. When organic matter is heated at increasing temperatures in open containers, the following processes generally occur, in successive or overlapping stages: * Below about 100 °C, volatiles, including some water, evaporate. Heat-sensitive substances, such as vitamin C and
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
, may partially change or decompose already at this stage. * At about 100 °C or slightly higher, any remaining water that is merely absorbed in the material is driven off. This process consumes a lot of energy, so the temperature may stop rising until all water has evaporated. Water trapped in crystal structure of
hydrate In chemistry, a hydrate is a substance that contains water or its constituent elements. The chemical state of the water varies widely between different classes of hydrates, some of which were so labeled before their chemical structure was understo ...
s may come off at somewhat higher temperatures. * Some solid substances, like fats, waxes, and
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or double ...
s, may melt and separate. * Between 100 and 500 °C, many common organic molecules break down. Most
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or double ...
s start decomposing at 160–180 °C. Cellulose, a major component of wood, paper, and cotton fabrics, decomposes at about 350 °C.
Lignin Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity ...
, another major wood component, starts decomposing at about 350 °C, but continues releasing volatile products up to 500 °C. The decomposition products usually include water, carbon monoxide and/or carbon dioxide , as well as a large number of organic compounds. Gases and volatile products leave the sample, and some of them may condense again as smoke. Generally, this process also absorbs energy. Some volatiles may ignite and burn, creating a visible flame. The non-volatile residues typically become richer in carbon and form large disordered molecules, with colors ranging between brown and black. At this point the matter is said to have been "
char Char may refer to: People *Char Fontane, American actress *Char Margolis, American spiritualist * René Char (1907–1988), French poet *The Char family of Colombia: ** Fuad Char, Colombian senator ** Alejandro Char Chaljub, mayor of Barranquilla ...
red" or "carbonized". * At 200–300 °C, if oxygen has not been excluded, the carbonaceous residue may start to burn, in a highly exothermic reaction, often with no or little visible flame. Once carbon combustion starts, the temperature rises spontaneously, turning the residue into a glowing
ember An ember, also called a hot coal, is a hot lump of smouldering solid fuel, typically glowing, composed of greatly heated wood, coal, or other carbon-based material. Embers (hot coals) can exist within, remain after, or sometimes precede, a ...
and releasing carbon dioxide and/or monoxide. At this stage, some of the nitrogen still remaining in the residue may be oxidized into
nitrogen oxide Nitrogen oxide may refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds: Charge-neutral *Nitric oxide (NO), nitrogen(II) oxide, or nitrogen monoxide *Nitrogen dioxide (), nitrogen(IV) oxide * Nitrogen trioxide (), or n ...
s like and .
Sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
and other elements like chlorine and arsenic may be oxidized and volatilized at this stage. * Once combustion of the carbonaceous residue is complete, a powdery or solid mineral residue (
ash Ash or ashes are the solid remnants of fires. Specifically, ''ash'' refers to all non-aqueous, non- gaseous residues that remain after something burns. In analytical chemistry, to analyse the mineral and metal content of chemical samples, ash ...
) is often left behind, consisting of inorganic oxidized materials of high melting point. Some of the ash may have left during combustion, entrained by the gases as
fly ash Fly ash, flue ash, coal ash, or pulverised fuel ash (in the UK) plurale tantum: coal combustion residuals (CCRs)is a coal combustion product that is composed of the particulates (fine particles of burned fuel) that are driven out of coal-fired ...
or
particulate emissions Particulates – also known as atmospheric aerosol particles, atmospheric particulate matter, particulate matter (PM) or suspended particulate matter (SPM) – are microscopic particles of solid or liquid matter suspended in the air. The ter ...
. Metals present in the original matter usually remain in the ash as
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
s or carbonates, such as potash. Phosphorus, from materials such as bone,
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
s, and
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
s, usually remains as phosphates.


Occurrence and uses


Cooking

Pyrolysis has many applications in food preparation. Caramelization is the pyrolysis of sugars in food (often after the sugars have been produced by the breakdown of
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with wa ...
s). The food goes brown and changes flavor. The distinctive flavors are used in many dishes; for instance, caramelized onion is used in French onion soup. The temperatures needed for caramelization lie above the
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envir ...
of water.
Frying oil Cooking oil is plant, animal, or synthetic liquid fat used in frying, baking, and other types of cooking. It is also used in food preparation and flavoring not involving heat, such as salad dressings and bread dips, and may be called edible oil. ...
can easily rise above the boiling point. Putting a lid on the frying pan keeps the water in, and some of it re-condenses, keeping the temperature too cool to brown for longer time. Pyrolysis of food can also be undesirable, as in the charring of burnt food (at temperatures too low for the oxidative combustion of carbon to produce flames and burn the food to
ash Ash or ashes are the solid remnants of fires. Specifically, ''ash'' refers to all non-aqueous, non- gaseous residues that remain after something burns. In analytical chemistry, to analyse the mineral and metal content of chemical samples, ash ...
).


Coke, carbon, charcoals, and chars

Carbon and carbon-rich materials have desirable properties but are nonvolatile, even at high temperatures. Consequently, pyrolysis is used to produce many kinds of carbon; these can be used for fuel, as reagents in steelmaking (coke), and as structural materials.
Charcoal Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, cal ...
is a less smoky fuel than pyrolyzed wood. Some cities ban, or used to ban, wood fires; when residents only use charcoal (and similarly-treated rock coal, called ''coke'') air pollution is significantly reduced. In cities where people do not generally cook or heat with fires, this is not needed. In the mid-20th century, "smokeless" legislation in Europe required cleaner-burning techniques, such as coke fuel and smoke-burning incinerators as an effective measure to reduce air pollution The coke-making or "coking" process consists of heating the material in "coking ovens" to very high temperatures (up to ) so that the molecules are broken down into lighter volatile substances, which leave the vessel, and a porous but hard residue that is mostly carbon and inorganic ash. The amount of volatiles varies with the source material, but is typically 25–30% of it by weight. High temperature pyrolysis is used on an industrial scale to convert coal into coke. This is useful in
metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the sc ...
, where the higher temperatures are necessary for many processes, such as steelmaking. Volatile by-products of this process are also often useful, including benzene and pyridine. Coke can also be produced from the solid residue left from petroleum refining. The original vascular structure of the wood and the pores created by escaping gases combine to produce a light and porous material. By starting with a dense wood-like material, such as nutshells or peach stones, one obtains a form of charcoal with particularly fine pores (and hence a much larger pore surface area), called
activated carbon Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that increase the surface area avail ...
, which is used as an adsorbent for a wide range of chemical substances. Biochar is the residue of incomplete organic pyrolysis, e.g., from cooking fires. It is a key component of the terra preta soils associated with ancient indigenous communities of the
Amazon basin The Amazon basin is the part of South America drained by the Amazon River and its tributaries. The Amazon drainage basin covers an area of about , or about 35.5 percent of the South American continent. It is located in the countries of Bolivi ...
. Terra preta is much sought by local farmers for its superior fertility and capacity to promote and retain an enhanced suite of beneficial microbiota, compared to the typical red soil of the region. Efforts are underway to recreate these soils through biochar, the solid residue of pyrolysis of various materials, mostly organic waste. Carbon fibers are filaments of carbon that can be used to make very strong yarns and textiles. Carbon fiber items are often produced by spinning and weaving the desired item from fibers of a suitable polymer, and then pyrolyzing the material at a high temperature (from ). The first carbon fibers were made from
rayon Rayon is a semi-synthetic fiber, made from natural sources of regenerated cellulose, such as wood and related agricultural products. It has the same molecular structure as cellulose. It is also called viscose. Many types and grades of viscose f ...
, but polyacrylonitrile has become the most common starting material. For their first workable
electric lamp An electric light, lamp, or light bulb is an electrical component that produces light. It is the most common form of artificial lighting. Lamps usually have a base made of ceramic, metal, glass, or plastic, which secures the lamp in the soc ...
s,
Joseph Wilson Swan Sir Joseph Wilson Swan FRS (31 October 1828 – 27 May 1914) was an English physicist, chemist, and inventor. He is known as an independent early developer of a successful incandescent light bulb, and is the person responsible for develop ...
and Thomas Edison used carbon filaments made by pyrolysis of cotton yarns and bamboo splinters, respectively. Pyrolysis is the reaction used to coat a preformed substrate with a layer of pyrolytic carbon. This is typically done in a fluidized bed reactor heated to . Pyrolytic carbon coatings are used in many applications, including artificial heart valves.Ratner, Buddy D. (2004). Pyrolytic carbon. In
Biomaterials science: an introduction to materials in medicine
''. Academic Press. pp. 171–180. .


Liquid and gaseous biofuels

Pyrolysis is the basis of several methods for producing fuel from
biomass Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bi ...
, i.e. lignocellulosic biomass. Crops studied as biomass feedstock for pyrolysis include native North American prairie grasses such as ''switchgrass'' and bred versions of other grasses such as ''Miscantheus giganteus''. Other sources of
organic matter Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have c ...
as feedstock for pyrolysis include greenwaste, sawdust, waste wood, leaves, vegetables, nut shells, straw, cotton trash, rice hulls, and orange peels. Animal waste including poultry litter, dairy manure, and potentially other manures are also under evaluation. Some industrial byproducts are also suitable feedstock including paper sludge, distillers grain, and sewage sludge. In the biomass components, the pyrolysis of hemicellulose happens between 210 and 310 °C. The pyrolysis of cellulose starts from 300–315 °C and ends at 360–380 °C, with a peak at 342–354 °C. Lignin starts to decompose at about 200 °C and continues until 1000 °C. Synthetic diesel fuel by pyrolysis of organic materials is not yet economically competitive. Higher efficiency is sometimes achieved by flash pyrolysis, in which finely divided feedstock is quickly heated to between for less than two seconds.
Syngas Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principly used for producing ammonia or methanol. Syngas is combustible and can be used as ...
is usually produced by pyrolysis. The low quality of oils produced through pyrolysis can be improved by physical and chemical processes, which might drive up production costs, but may make sense economically as circumstances change. There is also the possibility of integrating with other processes such as mechanical biological treatment and anaerobic digestion. Fast pyrolysis is also investigated for biomass conversion. Fuel bio-oil can also be produced by hydrous pyrolysis.


Methane pyrolysis for hydrogen

Methane pyrolysis is a industrial process for "turquoise" hydrogen production from methane by removing solid carbon from natural gas. This one-step process produces hydrogen in high volume at low cost (less than steam reforming with carbon sequestration). Only water is released when hydrogen is used as the fuel for
fuel-cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requi ...
electric heavy truck transportation, gas turbine electric power generation, and hydrogen for industrial processes including producing ammonia fertilizer and cement. Methane pyrolysis is the process operating around 1065 °C for producing hydrogen from natural gas that allows removal of carbon easily (solid carbon is a byproduct of the process). The industrial quality solid carbon can then be sold or landfilled and is not released into the atmosphere, avoiding emission of greenhouse gas (GHG) or ground water pollution from a landfill. In 2015, a company called Monolith Materials built a pilot plant in Redwood City, CA to study scaling Methane Pyrolysis using renewable power in the process.  A successful pilot project then led to a larger commercial scale demonstration plant in Hallam, Nebraska in 2016.  As of 2020, this plant is operational and can produce around 14 metric tons of hydrogen per day.  In 2021, the US Department of Energy backed Monolith Materials’ plans for major expansion with a $1B loan guarantee.  The funding will help produce a plant capable of generating 164 metric tons of hydrogen per day by 2024. Pilots with gas utilities and biogas plants are underway with companies like Modern Electron. Volume production is also being evaluated in the BASF "methane pyrolysis at scale" pilot plant, the chemical engineering team at University of California - Santa Barbara and in such research laboratories as Karlsruhe Liquid-metal Laboratory (KALLA). Power for process heat consumed is only one seventh of the power consumed in the water electrolysis method for producing hydrogen.


Ethylene

Pyrolysis is used to produce
ethylene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon-carbon double bonds). Ethylene i ...
, the chemical compound produced on the largest scale industrially (>110 million tons/year in 2005). In this process, hydrocarbons from petroleum are heated to around in the presence of steam; this is called
steam cracking Steam cracking is a petrochemical process in which saturated hydrocarbons are broken down into smaller, often unsaturated, hydrocarbons. It is the principal industrial method for producing the lighter alkenes (or commonly olefins), including ethe ...
. The resulting ethylene is used to make antifreeze ( ethylene glycol), PVC (via vinyl chloride), and many other polymers, such as polyethylene and polystyrene.


Semiconductors

The process of
metalorganic vapour-phase epitaxy Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. ...
(MOCVD) entails pyrolysis of volatile organometallic compounds to give semiconductors, hard coatings, and other applicable materials. The reactions entail thermal degradation of precursors, with deposition of the inorganic component and release of the hydrocarbons as gaseous waste. Since it is an atom-by-atom deposition, these atoms organize themselves into crystals to form the bulk semiconductor. Silicon chips are produced by the pyrolysis of silane: :SiH4 → Si + 2 H2.
Gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
, another semiconductor, forms upon co-pyrolysis of trimethylgallium and
arsine Arsine (IUPAC name: arsane) is an inorganic compound with the formula As H3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications in th ...
.


Waste management

Pyrolysis can also be used to treat municipal solid waste and plastic waste. The main advantage is the reduction in volume of the waste. In principle, pyrolysis will regenerate the monomers (precursors) to the polymers that are treated, but in practice the process is neither a clean nor an economically competitive source of monomers. In tire waste management,
tire pyrolysis Tire recycling, or rubber recycling, is the process of recycling waste tires that are no longer suitable for use on vehicles due to wear or irreparable damage. These tires are a challenging source of waste, due to the large volume produced, th ...
is a well-developed technology.ผศ.ดร.ศิริรัตน์ จิตการค้า, "ไพโรไลซิสยางรถยนต์หมดสภาพ : กลไกการผลิตน้ำมันเชื้อเพลิงคุณภาพสูง"วิทยาลัยปิโตรเลียมและปิโตรเคมี จุฬาลงกรณ์มหาวิทยาลัย (in Thai) Jidgarnka, S
"Pyrolysis of Expired Car Tires: Mechanics of Producing High Quality Fuels"
. Chulalongkorn University Department of Petrochemistry
Other products from car tire pyrolysis include steel wires, carbon black and bitumen. The area faces legislative, economic, and marketing obstacles. Oil derived from tire rubber pyrolysis has a high sulfur content, which gives it high potential as a pollutant and should be desulfurized. Alkaline pyrolysis of sewage sludge at low temperature of 500 °C can enhance H2 production with in-situ carbon capture. The use of NaOH (sodium hydroxide) has the potential to produce H2-rich gas that can be used for fuels cells directly. In early November 2021, the U.S. State of Georgia announced a joint effort with Igneo Technologies to build an $85 million large electronics recycling plant in the Port of Savannah. The project will focus on lower-value, plastics-heavy devices in the waste stream using multiple shredders and furnaces using pyrolysis technology.


One-stepwise pyrolysis and Two-stepwise pyrolysis for Tobacco Waste

Pyrolysis has also been used for trying to mitigate tobacco waste. One method was done where tobacco waste was separated into two categories TLW (Tobacco Leaf Waste) and TSW (Tobacco Stick Waste). TLW was determined to be any waste from cigarettes and TSW was determined to be any waste from electronic cigarettes. Both TLW and TSW were dried at 80 °C for 24 hours and stored in a desiccator. Samples were grounded so that the contents were uniform. Tobacco Waste (TW) also contains inorganic (metal) contents, which was determined using an inductively coupled plasma-optical spectrometer. Thermo-gravimetric analysis was used to thermally degrade four samples (TLW, TSW, glycerol, and guar gum) and monitored under specific dynamic temperature conditions. About one gram of both TLW and TSW were used in the pyrolysis tests. During these analysis tests, CO2 and N2 were used as atmospheres inside of a tubular reactor that was built using quartz tubing. For both CO2 and N2 atmospheres the flow rate was 100 mL min-1. External heating was created via a tubular furnace. The pyrogenic products were classified into three phases. The first phase was biochar, a solid residue produced by the reactor at 650 °C. The second phase liquid hydrocarbons were collected by a cold solvent trap and sorted by using chromatography. The third and final phase was analyzed using an online micro GC unit and those pyrolysates were gases. Two different types of experiments were conducted: one-stepwise pyrolysis and two-stepwise pyrolysis. One-stepwise pyrolysis consisted of a constant heating rate (10 °C min-1) from 30 to 720 °C. In the second step of the two-stepwise pyrolysis test the pyrolysates from the one-stepwise pyrolysis were pyrolyzed in the second heating zone which was controlled isothermally at 650 °C. The two-stepwise pyrolysis was used to focus primarily on how well CO2 affects carbon redistribution when adding heat through the second heating zone. First noted was the thermolytic behaviors of TLW and TSW in both the CO2 and N2 environments. For both TLW and TSW the thermolytic behaviors were identical at less than or equal to 660 °C in the CO2 and N2 environments. The differences between the environments start to occur when temperatures increase above 660 °C and the residual mass percentages significantly decrease in the CO2 environment compared to that in the N2 environment. This observation is likely due to the Boudouard reaction, where we see spontaneous gasification happening when temperatures exceed 710 °C. Although these observations were seen at temperatures lower than 710 °C it is most likely due to the catalytic capabilities of inorganics in TLW. It was further investigated by doing ICP-OES measurements and found that a fifth of the residual mass percentage was Ca species. CaCO3 is used in cigarette papers and filter material, leading to the explanation that degradation of CaCO3 causes pure CO2 reacting with
CaO Cao or CAO may refer to: Mythology *Cao (bull), a legendary bull in Meitei mythology Companies or organizations * Air China Cargo, ICAO airline designator CAO *CA Oradea, Romanian football club *CA Osasuna, Spanish football club *Canadian Assoc ...
in a dynamic equilibrium state. This being the reason for seeing mass decay between 660 °C and 710 °C. Differences in differential thermogram (DTG) peaks for TLW were compared to TSW. TLW had four distinctive peaks at 87, 195, 265, and 306 °C whereas TSW had two major drop offs at 200 and 306 °C with one spike in between. The four peaks indicated that TLW contains more diverse types of additives than TSW. The residual mass percentage between TLW and TSW was further compared, where the residual mass in TSW was less than that of TLW for both CO2 and N2 environments concluding that TSW has higher quantities of additives than TLW.  The one-stepwise pyrolysis experiment showed different results for the CO2 and N2 environments. During this process the evolution of 5 different notable gases were observed. Hydrogen, Methane, Ethane, Carbon Dioxide, and Ethylene all are produced when the thermolytic rate of TLW began to be retarded at greater than or equal to 500 °C. Thermolytic rate begins at the same temperatures for both the CO2 and N2 environment but there is higher concentration of the production of Hydrogen, Ethane, Ethylene, and Methane in the N2 environment than that in the CO2 environment. The concentration of CO in the CO2 environment is significantly greater as temperatures increase past 600 °C and this is due to CO2 being liberated from CaCO3 in TLW. This significant increase in CO concentration is why there is lower concentrations of other gases produced in the CO2 environment due to a dilution effect. Since pyrolysis is the re-distribution of carbons in carbon substrates into three pyrogenic products. The CO2 environment is going to be more effective because the CO2 reduction into CO allows for the oxidation of pyrolysates to form CO. In conclusion the CO2 environment allows a higher yield of gases than oil and biochar. When the same process is done for TSW the trends are almost identical therefore the same explanations can be applied to the pyrolysis of TSW. Harmful chemicals were reduced in the CO2 environment due to CO formation causing tar to be reduced. One-stepwise pyrolysis was not that effective on activating CO2 on carbon rearrangement due to the high quantities of liquid pyrolysates (tar). Two-stepwise pyrolysis for the CO2 environment allowed for greater concentrations of gases due to the second heating zone. The second heating zone was at a consistent temperature of 650 °C isothermally. More reactions between CO2 and gaseous pyrolysates with longer residence time meant that CO2 could further convert pyrolysates into CO. The results showed that the two-stepwise pyrolysis was an effective way to decrease tar content and increase gas concentration by about 10 wt.% for both TLW (64.20 wt.%) and TSW (73.71%).      


Thermal cleaning

Pyrolysis is also used for ''thermal cleaning'', an industrial application to remove
organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ Chemistry * Organic matter, matter that has come from a once-living organism, is capable of decay or is the product ...
substances such as polymers, plastics and coatings from parts, products or production components like extruder screws, spinnerets and static mixers. During the thermal cleaning process, at temperatures between 310 C° to 540 C° (600 °F to 1000 °F), organic material is converted by pyrolysis and oxidation into volatile organic compounds, hydrocarbons and carbonized gas. Inorganic elements remain. Several types of thermal cleaning systems use pyrolysis: * ''Molten Salt Baths'' belong to the oldest thermal cleaning systems; cleaning with a molten salt bath is very fast but implies the risk of dangerous splatters, or other potential hazards connected with the use of salt baths, like explosions or highly toxic
hydrogen cyanide Hydrogen cyanide, sometimes called prussic acid, is a chemical compound with the formula HCN and structure . It is a colorless, extremely poisonous, and flammable liquid that boils slightly above room temperature, at . HCN is produced on an ...
gas. * ''Fluidized Bed Systems'' use sand or aluminium oxide as heating medium; these systems also clean very fast but the medium does not melt or boil, nor emit any vapors or odors; the cleaning process takes one to two hours. * ''Vacuum Ovens'' use pyrolysis in a vacuum avoiding uncontrolled combustion inside the cleaning chamber; the cleaning process takes 8 to 30 hours. * ''Burn-Off Ovens'', also known as ''Heat-Cleaning Ovens'', are gas-fired and used in the painting, coatings, electric motors and plastics industries for removing organics from heavy and large metal parts.


Fine chemical synthesis

Pyrolysis is used in the production of chemical compounds, mainly, but not only, in the research laboratory. The area of boron-hydride clusters started with the study of the pyrolysis of diborane (B2H6) at ca. 200 °C. Products include the clusters
pentaborane Pentaborane may refer to: *Pentaborane(9) Pentaborane(9) is an inorganic compound with the formula B5H9. It is one of the most common boron hydride clusters, although it is a highly reactive compound. Because of its high reactivity toward oxygen, ...
and
decaborane Decaborane, also called decaborane(14), is the borane with the chemical formula B10 H14. This white crystalline compound is one of the principal boron hydride clusters, both as a reference structure and as a precursor to other boron hydrides. It ...
. These pyrolyses involve not only cracking (to give H2), but also re
condensation Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapor to ...
. The synthesis of nanoparticles, zirconia and oxides utilizing an ultrasonic nozzle in a process called ultrasonic spray pyrolysis (USP).


Other uses and occurrences

* Pyrolysis is used to turn organic materials into carbon for the purpose of
carbon-14 dating Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon. The method was dev ...
. * Pyrolysis of tobacco, paper, and additives, in
cigarettes A cigarette is a narrow cylinder containing a combustible material, typically tobacco, that is rolled into thin paper for smoking. The cigarette is ignited at one end, causing it to smolder; the resulting smoke is orally inhaled via the oppo ...
and other products, generates many volatile products (including
nicotine Nicotine is a naturally produced alkaloid in the nightshade family of plants (most predominantly in tobacco and ''Duboisia hopwoodii'') and is widely used recreationally as a stimulant and anxiolytic. As a pharmaceutical drug, it is used fo ...
, carbon monoxide, and tar) that are responsible for the aroma and negative
health effects Health effects (or health impacts) are changes in health resulting from exposure to a source. Health effects are an important consideration in many areas, such as hygiene, pollution studies, occupational safety and health, ( utrition and health sc ...
of
smoking Smoking is a practice in which a substance is burned and the resulting smoke is typically breathed in to be tasted and absorbed into the bloodstream. Most commonly, the substance used is the dried leaves of the tobacco plant, which have bee ...
. Similar considerations apply to the smoking of
marijuana Cannabis, also known as marijuana among other names, is a psychoactive drug from the cannabis plant. Native to Central or South Asia, the cannabis plant has been used as a drug for both recreational and entheogenic purposes and in various tra ...
and the burning of incense products and
mosquito coil A mosquito coil is a mosquito-repelling incense, usually made into a spiral, and typically made using dried paste of pyrethrum powder. The coil is usually held at the center of the spiral, suspending it in the air, or wedged by two pieces of fir ...
s. * Pyrolysis occurs during the incineration of trash, potentially generating volatiles that are toxic or contribute to air pollution if not completely burned. * Laboratory or industrial equipment sometimes gets fouled by carbonaceous residues that result from
coking Coking is the heating of coal in the absence of oxygen to a temperature above 600 °C to drive off the volatile components of the raw coal, leaving a hard, strong, porous material of high carbon content called coke. Coke consists almost ent ...
, the pyrolysis of organic products that come into contact with hot surfaces.


PAHs generation

Polycyclic aromatic hydrocarbons (PAHs) can be generated from the pyrolysis of different solid waste fractions, such as hemicellulose, cellulose,
lignin Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity ...
,
pectin Pectin ( grc, πηκτικός ': "congealed" and "curdled") is a heteropolysaccharide, a structural acid contained in the primary lamella, in the middle lamella, and in the cell walls of terrestrial plants. The principal, chemical component of ...
,
starch Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diets ...
, polyethylene (PE),
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It is a ...
(PS), polyvinyl chloride (PVC), and
polyethylene terephthalate Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in fibres for clothing, containers for liquids and foods ...
(PET). PS, PVC, and lignin generate significant amount of PAHs.
Naphthalene Naphthalene is an organic compound with formula . It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08  ppm by mass. As an aromati ...
is the most abundant PAH among all the polycyclic aromatic hydrocarbons. When the temperature is increased from 500 to 900 °C, most PAHs increase. With increasing temperature, the percentage of light PAHs decreases and the percentage of heavy PAHs increases.


Study tools


Thermogravimetric analysis

Thermogravimetric analysis (TGA) is one of the most common techniques to investigate pyrolysis with no limitations of heat and mass transfer. The results can be used to determine mass loss kinetics. Activation energies can be calculated using the
Kissinger method Henry Alfred Kissinger (; ; born Heinz Alfred Kissinger, May 27, 1923) is a German-born American politician, diplomat, and geopolitical consultant who served as United States Secretary of State and National Security Advisor under the presiden ...
or peak analysis-least square method (PA-LSM). TGA can couple with Fourier-transform infrared spectroscopy (FTIR) and
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
. As the temperature increases, the volatiles generated from pyrolysis can be measured.


Macro-TGA

In TGA, the sample is loaded first before the increase of temperature, and the heating rate is low (less than 100 °C min−1). Macro-TGA can use gram-scale samples, which can be used to investigate the pyrolysis with mass and heat transfer effects.


Pyrolysis–gas chromatography–mass spectrometry

Pyrolysis mass spectrometry The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek language, Greek-derived ...
(Py-GC-MS) is an important laboratory procedure to determine the structure of compounds.


History

Pyrolysis has been used for turning wood into
charcoal Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, cal ...
since ancient times. The ancient Egyptians used
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a ...
, which they obtained from the pyrolysis of wood in their embalming process. The dry distillation of wood remained the major source of methanol into the early 20th century. Pyrolysis was instrumental in the discovery of many chemical substances, such as phosphorus from
ammonium sodium hydrogen phosphate The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary amm ...
in concentrated urine and oxygen from mercuric oxide and various
nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
s.


See also

* Dextrin *
Gasification Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (). This is achieved by reacting ...
* Hydrogen * Hydrogen production * Karrick process *
Pyrolytic coating Pyrolytic coating is a thin film coating applied at high temperatures and sprayed onto the glass surface during the float glass process. Advantages *Relatively durable coating. * Can be tempered after coating application. * Can be used in single ...
* Thermal decomposition * Torrefaction * Wood gas


References


External links


In Situ Catalytic Fast Pyrolysis Technology Pathway
National Renewable Energy Laboratory {{Authority control Organic reactions Chemical processes Industrial processes Oil shale technology Biodegradable waste management Waste treatment technology Fire protection