HOME

TheInfoList



OR:

Pyrolite is a term used to characterize a model composition of the Earth's mantle. This model is based on that a pyrolite source can produce the
Mid-Ocean Ridge A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diver ...
Basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90 ...
by partial melting. It was first proposed by
Ted Ringwood Alfred Edward "Ted" Ringwood FRS FAA (19 April 1930 – 12 November 1993) was an Australian experimental geophysicist and geochemist, and the 1988 recipient of the Wollaston Medal. The mineral ringwoodite is named after him. Early life and st ...
(1962) as being 1 part basalt and 4 parts
harzburgite Harzburgite, an ultramafic, igneous rock, is a variety of peridotite consisting mostly of the two minerals olivine and low-calcium (Ca) pyroxene ( enstatite); it is named for occurrences in the Harz Mountains of Germany. It commonly contains ...
, but later was revised to being 1 part
tholeiitic basalt The tholeiitic magma series is one of two main magma series in subalkaline igneous rocks, the other being the calc-alkaline series. A magma series is a chemically distinct range of magma compositions that describes the evolution of a mafic magma ...
and 3 parts
dunite Dunite (), also known as olivinite (not to be confused with the mineral olivenite), is an intrusive igneous rock of ultramafic composition and with phaneritic (coarse-grained) texture. The mineral assemblage is greater than 90% olivine, with ...
. The term is derived from the mineral names PYR-oxene and OL-ivine. However, whether pyrolite is representative of the Earth's mantle remains debated.


Chemical composition and

phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...

The major elements composition of pyrolite is about 44.71 weight percent (wt%) SiO2, 3.98 wt% Al2O3, 8.18 wt% FeO, 3.17 wt% CaO, 38.73 wt% MgO, 0.13 wt% Na2O. 1) A pyrolitic
Upper Mantle The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about under the oceans and about under the continents) and ends at the top of the lower mantle at . Temperatures range from appr ...
is mainly composed of olivine (~60
volume percent In chemistry and fluid mechanics, the volume fraction φ''i'' is defined as the volume of a constituent ''V'i'' divided by the volume of all constituents of the mixture ''V'' prior to mixing: :\phi_i = \frac Being dimensionless, its unit is ...
(vol%)),
clinopyroxene The pyroxenes (commonly abbreviated to ''Px'') are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula , where X represents calcium (Ca), sodium (Na), iron (Fe I ...
, orthopyroxene, and
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different s ...
. Pyroxene would gradually dissolved into
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different s ...
and form majoritic garnet. 2) A pyrolitic
Mantle Transition Zone The transition zone is part of the Earth's mantle, and is located between the lower mantle and the upper mantle, between a depth of 410 and 660 km (250 to 400 mi). The Earth's mantle, including the transition zone, consists primarily o ...
is mainly composed of 60 vol% olivine-polymorphs (
wadsleyite Wadsleyite is an orthorhombic mineral with the formula β-(Mg,Fe)2SiO4. It was first found in nature in the Peace River meteorite from Alberta, Canada. It is formed by a phase transformation from olivine (α-(Mg,Fe)2SiO4) under increasing p ...
,
ringwoodite Ringwoodite is a high-pressure phase of Mg2SiO4 (magnesium silicate) formed at high temperatures and pressures of the Earth's mantle between depth. It may also contain iron and hydrogen. It is polymorphous with the olivine phase forsterite (a ...
) and ~40 vol% majoritic garnet. The top and bottom boundary of the Mantle Transition zone are mainly marked by olivine-wadsleyite transition and ringwoodite-perovskite transition, respectively. 3) A pyrolitc
Lower Mantle The lower mantle, historically also known as the mesosphere, represents approximately 56% of Earth's total volume, and is the region from 660 to 2900 km below Earth's surface; between the transition zone and the outer core. The preliminar ...
is mainly composed of magnesium perovskite (~80 vol%), ferroperclase (~13 vol%), and calcium perovskite (~7%). In addition,
post-perovskite Post-perovskite (pPv) is a high-pressure phase of magnesium silicate (MgSiO3). It is composed of the prime oxide constituents of the Earth's rocky mantle (MgO and SiO2), and its pressure and temperature for stability imply that it is likely to occur ...
may present at the bottom of the Lower Mantle.


Seismic velocity and density properties

The P-wave and
S-wave __NOTOC__ In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because th ...
velocities (Vp and Vs) of pyrolite along the 1600 K adiabatic
geotherm Geothermal gradient is the rate of temperature change with respect to increasing depth in Earth's interior. As a general rule, the crust temperature rises with depth due to the heat flow from the much hotter mantle; away from tectonic plate bo ...
are shown in Fig. 2, and its density profile is shown in Fig. 3. At the boundary between the Upper Mantle and the Mantle Transition Zone (~410 km), Vp, Vs, and density jump by ~6%, ~6%, and ~4% in a pyrolite model, respectively, which are mainly attributed to the olivine-wadsleyite
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
. At the boundary between the Mantle Transition Zone and the Lower Mantle, Vp, Vs, and density jump by ~3%, ~6%, and ~6% in a pyrolite model, respectively. With more elasticity parameters available, the Vp, Vs, and density profiles of pyrolite would be updated.


Shortcomings

Whether pyrolite could represent the ambient mantle remains debated. In the geochemical aspect, it does not satisfy trace elements or isotopic data of Mid-Ocean Ridge Basalts because the pyrolite hypothesis is based on major elements and some arbitrary assumptions (e.g. amounts of basalt and melting in the source). It may also violate mantle heterogeneity. In the geophysical aspect, some studies suggest that seismic velocities of pyrolite do not match well with the observed global seismic models (such as PREM) in the Earth's interior, whereas some studies support the pyrolite model.


Other Mantle Rock models

There are other rock models for the Earth's mantle: (1) Piclogite: by contrast to the olivine-enriched pyrolite, piclogite is an olivine-poor model (~20% olivine) proposed to provide a better match to the seismic velocity observations in the transition zone. The piclogite phase composition is similar as 20% olivine + 80% eclogite. (2)
Eclogite Eclogite () is a metamorphic rock containing garnet (almandine- pyrope) hosted in a matrix of sodium-rich pyroxene (omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite, amphibole, phengite, paragonite, ...
, it is transformed from the Mid-Ocean Ridge Basalt at a depth of ~60 km, exists in the Earth's mantle mainly within the subducted slabs. It is mainly composed of garnet and clinopyroxene (mainly
omphacite Omphacite is a member of the clinopyroxene group of silicate minerals with formula: ( Ca, Na)( Mg, Fe2+, Al) Si2 O6. It is a variably deep to pale green or nearly colorless variety of clinopyroxene. It normally appears in eclogite, which is the ...
) up to ~500 km depth (Fig. 4). (3) Harzburgite, it mainly exists under the Mid-Ocean Ridge basalt layer of the oceanic lithosphere, and can enter into the deep mantle along with the subducted oceanic lithosphere. Its phase composition is similar as pyrolite, but shows higher olivine proportion (~70 vol%) than pyrolite. Overall, pyrolite and piclogite are both rock models for the ambient mantle, eclogite and harzburgite are rock models for
subducted Subduction is a geological process in which the oceanic lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the ...
oceanic lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of up to thousands of years or ...
. Formed from partial melting of pyrolite, the oceanic lithosphere is mainly composed of the basalt layer, harzburgite layer, and depleted pyrolite from top to bottom. The subducted oceanic lithospheres contribute to the heterogeneity in the Earth's mantle because they have different composition (eclogite and harzburgite) from the ambient mantle (pyrolite).


See also

* Peridotite


References

{{Reflist Igneous rocks Petrology Geologic modelling