Preliminary Reference Earth Model
   HOME
*



picture info

Preliminary Reference Earth Model
The preliminary reference Earth model (PREM) plots the average of Earth's properties by depth. It includes a table of Earth properties, including elastic properties, attenuation, density, pressure, and gravity. PREM has been widely used as the basis for seismic tomography and related global geophysical models. It incorporates anelastic dispersion and anisotropy and therefore it is frequency-dependent and transversely isotropic for the upper mantle. PREM was developed by Adam M. Dziewonski and Don L. Anderson in response to guidelines of a "Standard Earth Model Committee" of the International Association of Geodesy (IAG) and the International Association of Seismology and Physics of the Earth's Interior International Association of Seismology and Physics of the Earth's Interior (IASPEI) is an international organization promoting the study of earthquakes and other seismic sources, the propagation of seismic waves, and the internal structure, prop ... (IASPEI) Other Earth refer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seismic Anisotropy
Seismic anisotropy is a term used in seismology to describe the directional dependence of the velocity of seismic waves in a medium (rock) within the Earth. Description A material is said to be anisotropic if the value of one or more of its properties varies with direction. Anisotropy differs from the property called heterogeneity in that anisotropy is the variation in values with direction at a point while heterogeneity is the variation in values between two or more points. Seismic Anisotropy can be defined as the dependence of seismic velocity on direction or upon angle. General anisotropy is described by a 4th order elasticity tensor with 21 independent elements. However, in practice observational studies are unable to distinguish all 21 elements, and anisotropy is usually simplified. In the simplest form, there are two main types of anisotropy, both of them are called transverse isotropy (it is called transverse isotropy because there is isotropy in either the horizontal or v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Association Of Seismology And Physics Of The Earth’s Interior
International Association of Seismology and Physics of the Earth's Interior (IASPEI) is an international organization promoting the study of earthquakes and other seismic sources, the propagation of seismic waves, and the internal structure, properties and processes of the Earth. IASPEI is one of eight associations of the International Union of Geodesy and Geophysics (IUGG). IASPEI initiates and co-ordinates international researches and scientific discussion on scientific and applied seismology. The activities of IASPEI focus on the societal impacts of earthquakes and tsunamis, with four regional commissions promoting high standards of seismological education, outreach and international scientific cooperation. IASPEI Commissions * Commission on Education and Outreach * Commission on Seismological Observation and Interpretation (CoSOI) * Commission on Tectonophysics and Crustal Structure * Commission on Earthquake Generation Process - Physics, Modelling, and Monitoring for For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Association Of Geodesy
) , merged = , successor = , formation = , founder = , founding_location = , extinction = , merger = , type = scholarly society , tax_id = , registration_id = , status = , purpose = advancement of geodesy , professional_title = , headquarters = Munich, , location = , location2 = , additional_location = , additional_location2= , coordinates = , origins = , region = worldwide , products = , services = , methods = , fields = , membership = , membership_year = , language = , owner = , sec_gen = , leader_title = , leader_name = , leader_title2 = , leader_name2 = , leader_title3 = , leader_name3 = , l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Don L
Don, don or DON and variants may refer to: Places *County Donegal, Ireland, Chapman code DON *Don (river), a river in European Russia *Don River (other), several other rivers with the name *Don, Benin, a town in Benin *Don, Dang, a village and hill station in Dang district, Gujarat, India *Don, Nord, a ''commune'' of the Nord ''département'' in northern France *Don, Tasmania, a small village on the Don River, located just outside Devonport, Tasmania *Don, Trentino, a commune in Trentino, Italy * Don, West Virginia, a community in the United States *Don Republic, a temporary state in 1918–1920 *Don Jail, a jail in Toronto, Canada People Role or title *Don (honorific), a Spanish, Portuguese, and Italian title, given as a mark of respect *Don, a crime boss, especially in the Mafia , ''Don Konisshi'' (コニッシー) *Don, a resident assistant at universities in Canada and the U.S. *University don, in British and Irish universities, especially at Oxford, Cambridge, St An ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adam Dziewonski
Adam Marian Dziewoński (November 15, 1936 – March 1, 2016) was a Polish-American geophysicist who made seminal contributions to the determination of the large-scale structure of the Earth's interior and the nature of earthquakes using seismological methods. He spent most of his career at Harvard University, where he was the Frank B. Baird, Jr. Professor of Science. Life and main scientific contributions Dziewonski was born in Lwów, which was then a part of Poland, currently a part of Ukraine. After having earned a master's degree from the University of Warsaw, Poland (1960), and a Doctorate of Technical Sciences from the Academy of Mines and Metallurgy, Cracow, Poland (1965) Dziewonski taught at the University of Texas at Dallas for several years before settling at Harvard. In the 1960s and 1970s, Dziewonski and his collaborators laid the foundation to understanding the underlying cause of tectonic plate motions by exploring convection currents in the Earth's mantle with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Upper Mantle (Earth)
The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about under the oceans and about under the continents) and ends at the top of the lower mantle at . Temperatures range from approximately at the upper boundary with the crust to approximately at the boundary with the lower mantle. Upper mantle material that has come up onto the surface comprises about 55% olivine, 35% pyroxene, and 5 to 10% of calcium oxide and aluminum oxide minerals such as plagioclase, spinel, or garnet, depending upon depth. Seismic structure The density profile through Earth is determined by the velocity of seismic waves. Density increases progressively in each layer, largely due to compression of the rock at increased depths. Abrupt changes in density occur where the material composition changes. The upper mantle begins just beneath the crust and ends at the top of the lower mantle. The upper mantle causes the tectonic plates to move. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotropy
Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe situations where properties vary systematically, dependent on direction. Isotropic radiation has the same intensity regardless of the direction of measurement, and an isotropic field exerts the same action regardless of how the test particle is oriented. Mathematics Within mathematics, ''isotropy'' has a few different meanings: ; Isotropic manifolds: A manifold is isotropic if the geometry on the manifold is the same regardless of direction. A similar concept is homogeneity. ; Isotropic quadratic form: A quadratic form ''q'' is said to be isotropic if there is a non-zero vector ''v'' such that ; such a ''v'' is an isotropic vector or null vector. In complex geometry, a line through the origin in the direction of an isotropic vector is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geophysics
Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' sometimes refers only to solid earth applications: Earth's shape; its gravitational and magnetic fields; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets. Gutenberg, B., 1929, Lehrbuch der Geophysik. Leipzig. Berlin (Gebruder Borntraeger). Runcorn, S.K, (editor-in-chief), 1967, International ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surface is made up of the ocean, dwarfing Earth's polar ice, lakes, and rivers. The remaining 29% of Earth's surface is land, consisting of continents and islands. Earth's surface layer is formed of several slowly moving tectonic plates, which interact to produce mountain ranges, volcanoes, and earthquakes. Earth's liquid outer core generates the magnetic field that shapes the magnetosphere of the Earth, deflecting destructive solar winds. The atmosphere of the Earth consists mostly of nitrogen and oxygen. Greenhouse gases in the atmosphere like carbon dioxide (CO2) trap a part of the energy from the Sun close to the surface. Water vapor is widely present in the atmosphere and forms clouds that cover most of the planet. More solar e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Seismic Tomography
Seismic tomography or seismotomography is a technique for imaging the subsurface of the Earth with seismic waves produced by earthquakes or explosions. P-, S-, and surface waves can be used for tomographic models of different resolutions based on seismic wavelength, wave source distance, and the seismograph array coverage. The data received at seismometers are used to solve an inverse problem, wherein the locations of reflection and refraction of the wave paths are determined. This solution can be used to create 3D images of velocity anomalies which may be interpreted as structural, thermal, or compositional variations. Geoscientists use these images to better understand core, mantle, and plate tectonic processes. Theory Tomography is solved as an inverse problem. Seismic travel time data are compared to an initial Earth model and the model is modified until the best possible fit between the model predictions and observed data is found. Seismic waves would travel in straight lines ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravity Of Earth
The gravity of Earth, denoted by , is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm g=\, \mathit\, . In SI units this acceleration is expressed in metres per second squared (in symbols, m/ s2 or m·s−2) or equivalently in newtons per kilogram (N/kg or N·kg−1). Near Earth's surface, the gravity acceleration is approximately , which means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about per second every second. This quantity is sometimes referred to informally as ''little '' (in contrast, the gravitational constant is referred to as ''big ''). The precise strength of Earth's gravity varies depending on location. The nominal "average" value at Earth's surface, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]