Proton Records
   HOME

TheInfoList



OR:

A proton is a stable
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a pr ...
, symbol , H+, or 1H+ with a positive
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
of +1 ''e''
elementary charge The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a fundame ...
. Its mass is slightly less than that of a
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
and 1,836 times the mass of an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
(the proton–electron mass ratio). Protons and neutrons, each with masses of approximately one
atomic mass unit The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass widely used in physics and chemistry. It is defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at ...
, are jointly referred to as " nucleons" (particles present in atomic nuclei). One or more protons are present in the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
of every
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
(represented by the symbol ''Z''). Since each element has a unique number of protons, each element has its own unique atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element. The word ''proton'' is Greek for "first", and this name was given to the hydrogen nucleus by Ernest Rutherford in 1920. In previous years, Rutherford had discovered that the
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
nucleus (known to be the lightest nucleus) could be extracted from the nuclei of
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
by atomic collisions. Protons were therefore a candidate to be a fundamental or
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
, and hence a building block of nitrogen and all other heavier atomic nuclei. Although protons were originally considered elementary particles, in the modern
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
of
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, protons are now known to be composite particles, containing three valence quarks, and together with
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s are now classified as
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s. Protons are composed of two up quarks of charge +''e'' and one down quark of charge −''e''. The rest masses of quarks contribute only about 1% of a proton's mass. The remainder of a proton's mass is due to quantum chromodynamics binding energy, which includes the
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
of the quarks and the energy of the
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
fields that bind the quarks together. Because protons are not fundamental particles, they possess a measurable size; the
root mean square In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of the ...
charge radius The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. It can be measured by the scattering of electrons by the nucleus. Relative changes in the mean squared nuclear charge distribution can be ...
of a proton is about 0.84–0.87 fm (or to ). In 2019, two different studies, using different techniques, found this radius to be 0.833 fm, with an uncertainty of ±0.010 fm. Free protons occur occasionally on Earth: thunderstorms can produce protons with energies of up to several tens of
MeV In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an Voltage, electric potential difference of one volt i ...
. At sufficiently low temperatures and kinetic energies, free protons will bind to
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s. However, the character of such bound protons does not change, and they remain protons. A fast proton moving through matter will slow by interactions with electrons and nuclei, until it is captured by the electron cloud of an atom. The result is a protonated atom, which is a
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
of hydrogen. In a vacuum, when free electrons are present, a sufficiently slow proton may pick up a single free electron, becoming a neutral
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen consti ...
, which is chemically a free radical. Such "free hydrogen atoms" tend to react chemically with many other types of atoms at sufficiently low energies. When free hydrogen atoms react with each other, they form neutral hydrogen molecules (H2), which are the most common molecular component of molecular clouds in interstellar space. Free protons are routinely used for accelerators for
proton therapy In medicine, proton therapy, or proton radiotherapy, is a type of particle therapy that uses a beam of protons to irradiate diseased tissue, most often to treat cancer. The chief advantage of proton therapy over other types of external beam ra ...
or various particle physics experiments, with the most powerful example being the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundred ...
.


Description

Protons are spin-
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
s and are composed of three valence quarks, making them baryons (a sub-type of
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s). The two up quarks and one down quark of a proton are held together by the strong force, mediated by
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
s. A modern perspective has a proton composed of the valence quarks (up, up, down), the gluons, and transitory pairs of sea quarks. Protons have a positive charge distribution which decays approximately exponentially, with a root mean square
charge radius The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. It can be measured by the scattering of electrons by the nucleus. Relative changes in the mean squared nuclear charge distribution can be ...
of about 0.8 fm. Protons and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s are both nucleons, which may be bound together by the nuclear force to form
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in ...
. The nucleus of the most common isotope of the
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen consti ...
(with the chemical symbol "H") is a lone proton. The nuclei of the heavy hydrogen isotopes deuterium and tritium contain one proton bound to one and two neutrons, respectively. All other types of atomic nuclei are composed of two or more protons and various numbers of neutrons.


History

The concept of a hydrogen-like particle as a constituent of other atoms was developed over a long period. As early as 1815, William Prout proposed that all atoms are composed of hydrogen atoms (which he called "protyles"), based on a simplistic interpretation of early values of atomic weights (see
Prout's hypothesis Prout's hypothesis was an early 19th-century attempt to explain the existence of the various chemical elements through a hypothesis regarding the internal structure of the atom. In 1815 and 1816, the English chemist William Prout published two p ...
), which was disproved when more accurate values were measured. In 1886,
Eugen Goldstein Eugen Goldstein (; 5 September 1850 – 25 December 1930) was a German physicist. He was an early investigator of discharge tubes, the discoverer of anode rays or canal rays, later identified as positive ions in the gas phase including the hy ...
discovered canal rays (also known as anode rays) and showed that they were positively charged particles (ions) produced from gases. However, since particles from different gases had different values of charge-to-mass ratio (e/m), they could not be identified with a single particle, unlike the negative
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s discovered by J. J. Thomson. Wilhelm Wien in 1898 identified the hydrogen ion as the particle with the highest charge-to-mass ratio in ionized gases. Following the discovery of the atomic nucleus by Ernest Rutherford in 1911,
Antonius van den Broek Antonius Johannes van den Broek (4 May 1870, Zoetermeer – 25 October 1926, Bilthoven) was a Dutch amateur physicist notable for being the first who realized that the number of an element in the periodic table (now called atomic number) correspond ...
proposed that the place of each element in the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
(its atomic number) is equal to its nuclear charge. This was confirmed experimentally by Henry Moseley in 1913 using X-ray spectra. In 1917 (in experiments reported in 1919 and 1925), Rutherford proved that the hydrogen nucleus is present in other nuclei, a result usually described as the discovery of protons. These experiments began after Rutherford had noticed that, when alpha particles were shot into air (mostly nitrogen), his scintillation detectors showed the signatures of typical hydrogen nuclei as a product. After experimentation Rutherford traced the reaction to the nitrogen in air and found that when alpha particles were introduced into pure nitrogen gas, the effect was larger. In 1919 Rutherford assumed that the alpha particle merely knocked a proton out of nitrogen, turning it into carbon. After observing Blackett's cloud chamber images in 1925, Rutherford realized that the alpha particle was absorbed. After capture of the alpha particle, a hydrogen nucleus is ejected, so that heavy oxygen, not carbon, is the result – i.e., the atomic number ''Z'' of the nucleus is increased rather than reduced. This was the first reported nuclear reaction, . Rutherford at first thought of our modern "p" in this equation as a hydrogen ion, . Depending on one's perspective, either 1919 (when it was seen experimentally as derived from another source than hydrogen) or 1920 (when it was recognized and proposed as an elementary particle) may be regarded as the moment when the proton was 'discovered'. Rutherford knew hydrogen to be the simplest and lightest element and was influenced by
Prout's hypothesis Prout's hypothesis was an early 19th-century attempt to explain the existence of the various chemical elements through a hypothesis regarding the internal structure of the atom. In 1815 and 1816, the English chemist William Prout published two p ...
that hydrogen was the building block of all elements. Discovery that the hydrogen nucleus is present in other nuclei as an elementary particle led Rutherford to give the hydrogen nucleus a special name as a particle, since he suspected that hydrogen, the lightest element, contained only one of these particles. He named this new fundamental building block of the nucleus the ''proton,'' after the neuter singular of the Greek word for "first", . However, Rutherford also had in mind the word ''protyle'' as used by Prout. Rutherford spoke at the
British Association for the Advancement of Science The British Science Association (BSA) is a charity and learned society founded in 1831 to aid in the promotion and development of science. Until 2009 it was known as the British Association for the Advancement of Science (BA). The current Chie ...
at its Cardiff meeting beginning 24 August 1920. At the meeting, he was asked by Oliver Lodge for a new name for the positive hydrogen nucleus to avoid confusion with the neutral hydrogen atom. He initially suggested both ''proton'' and ''prouton'' (after Prout). Rutherford later reported that the meeting had accepted his suggestion that the hydrogen nucleus be named the "proton", following Prout's word "protyle". The first use of the word "proton" in the scientific literature appeared in 1920.


Stability

The free proton (a proton not bound to nucleons or electrons) is a stable particle that has not been observed to break down spontaneously to other particles. Free protons are found naturally in a number of situations in which energies or temperatures are high enough to separate them from electrons, for which they have some affinity. Free protons exist in plasmas in which temperatures are too high to allow them to combine with
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s. Free protons of high energy and velocity make up 90% of cosmic rays, which propagate in vacuum for interstellar distances. Free protons are emitted directly from
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in ...
in some rare types of
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
. Protons also result (along with electrons and antineutrinos) from the
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
of free neutrons, which are unstable. The spontaneous decay of free protons has never been observed, and protons are therefore considered stable particles according to the Standard Model. However, some grand unified theories (GUTs) of particle physics predict that proton decay should take place with lifetimes between 1031 to 1036 years and experimental searches have established lower bounds on the mean lifetime of a proton for various assumed decay products. Experiments at the Super-Kamiokande detector in Japan gave lower limits for proton mean lifetime of for decay to an antimuon and a neutral pion, and for decay to a
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
and a neutral pion. Another experiment at the Sudbury Neutrino Observatory in Canada searched for gamma rays resulting from residual nuclei resulting from the decay of a proton from oxygen-16. This experiment was designed to detect decay to any product, and established a lower limit to a proton lifetime of . However, protons are known to transform into
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s through the process of electron capture (also called inverse beta decay). For free protons, this process does not occur spontaneously but only when energy is supplied. The equation is: : + → + The process is reversible; neutrons can convert back to protons through beta decay, a common form of
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
. In fact, a free neutron decays this way, with a mean lifetime of about 15 minutes. A proton can also transform into neutrons through beta plus decay (β+ decay). According to
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
, the mean proper lifetime of protons \tau_\mathrm becomes finite when they are accelerating with proper acceleration a, and \tau_\mathrm decreases with increasing a. Acceleration gives rise to a non-vanishing probability for the transition . This was a matter of concern in the later 1990s because \tau_\mathrm is a scalar that can be measured by the inertial and coaccelerated observers. In the
inertial frame In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. ...
, the accelerating proton should decay according to the formula above. However, according to the coaccelerated observer the proton is at rest and hence should not decay. This puzzle is solved by realizing that in the coaccelerated frame there is a thermal bath due to Fulling–Davies–Unruh effect, an intrinsic effect of quantum field theory. In this thermal bath, experienced by the proton, there are electrons and antineutrinos with which the proton may interact according to the processes: (i) , (ii) and (iii) . Adding the contributions of each of these processes, one should obtain \tau_\mathrm.


Quarks and the mass of a proton

In
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
, the modern theory of the nuclear force, most of the mass of protons and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s is explained by special relativity. The mass of a proton is about 80–100 times greater than the sum of the rest masses of its three valence
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s, while the
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
s have zero rest mass. The extra energy of the
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s and
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
s in a proton, as compared to the rest energy of the quarks alone in the QCD vacuum, accounts for almost 99% of the proton's mass. The rest mass of a proton is, thus, the
invariant mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
of the system of moving quarks and gluons that make up the particle, and, in such systems, even the energy of massless particles is still measured as part of the rest mass of the system. Two terms are used in referring to the mass of the quarks that make up protons: ''
current quark Current quarks (also called naked quarks or bare quarks) are a description of valence quarks as the cores of the quark particles that are the invariable parts of a hadron, with their non-virtual ("real" or permanent) quarks with their surroundin ...
mass'' refers to the mass of a quark by itself, while '' constituent quark mass'' refers to the current quark mass plus the mass of the
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
particle field surrounding the quark. These masses typically have very different values. The kinetic energy of the quarks that is a consequence of confinement is a contribution (see '' Mass in special relativity''). Using lattice QCD calculations, the contributions to the mass of the proton are the quark condensate (~9%, comprising the up and down quarks and a sea of virtual strange quarks), the quark kinetic energy (~32%), the gluon kinetic energy (~37%), and the anomalous gluonic contribution (~23%, comprising contributions from condensates of all quark flavors). The constituent quark model wavefunction for the proton is \mathrm. The internal dynamics of protons are complicated, because they are determined by the quarks' exchanging gluons, and interacting with various vacuum condensates. Lattice QCD provides a way of calculating the mass of a proton directly from the theory to any accuracy, in principle. The most recent calculations claim that the mass is determined to better than 4% accuracy, even to 1% accuracy (see Figure S5 in Dürr ''et al.''). These claims are still controversial, because the calculations cannot yet be done with quarks as light as they are in the real world. This means that the predictions are found by a process of extrapolation, which can introduce systematic errors. It is hard to tell whether these errors are controlled properly, because the quantities that are compared to experiment are the masses of the
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s, which are known in advance. These recent calculations are performed by massive supercomputers, and, as noted by Boffi and Pasquini: "a detailed description of the nucleon structure is still missing because ... long-distance behavior requires a nonperturbative and/or numerical treatment ..." More conceptual approaches to the structure of protons are: the topological soliton approach originally due to Tony Skyrme and the more accurate AdS/QCD approach that extends it to include a
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
of gluons, various QCD-inspired models like the bag model and the constituent quark model, which were popular in the 1980s, and the
SVZ sum rules In quantum chromodynamics, the confining and strong coupling nature of the theory means that conventional perturbative techniques often fail to apply. The QCD sum rules (or Shifman– Vainshtein–Zakharov sum rules) are a way of dealing with th ...
, which allow for rough approximate mass calculations. These methods do not have the same accuracy as the more brute-force lattice QCD methods, at least not yet.


Charge radius

The problem of defining a radius for an atomic nucleus (proton) is similar to the problem of atomic radius, in that neither atoms nor their nuclei have definite boundaries. However, the nucleus can be modeled as a sphere of positive charge for the interpretation of electron scattering experiments: because there is no definite boundary to the nucleus, the electrons "see" a range of cross-sections, for which a mean can be taken. The qualification of "rms" (for "
root mean square In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of the ...
") arises because it is the nuclear cross-section, proportional to the square of the radius, which is determining for electron scattering. The internationally accepted value of a proton's
charge radius The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. It can be measured by the scattering of electrons by the nucleus. Relative changes in the mean squared nuclear charge distribution can be ...
is . This value is based on measurements involving a proton and an electron (namely, electron scattering measurements and complex calculation involving scattering cross section based on Rosenbluth equation for momentum-transfer cross section), and studies of the atomic energy levels of hydrogen and deuterium. However, in 2010 an international research team published a proton charge radius measurement via the Lamb shift in muonic hydrogen (an exotic atom made of a proton and a negatively charged
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wi ...
). As a muon is 200 times heavier than an electron, its de Broglie wavelength is correspondingly shorter. This smaller atomic orbital is much more sensitive to the proton's charge radius, so allows more precise measurement. Their measurement of the root-mean-square charge radius of a proton is ", which differs by 5.0
standard deviation In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while ...
s from the
CODATA The Committee on Data of the International Science Council (CODATA) was established in 1966 as the Committee on Data for Science and Technology, originally part of the International Council of Scientific Unions, now part of the International ...
value of ". In January 2013, an updated value for the charge radius of a proton——was published. The precision was improved by 1.7 times, increasing the significance of the discrepancy to 7''σ''. The 2014 CODATA adjustment slightly reduced the recommended value for the proton radius (computed using electron measurements only) to , but this leaves the discrepancy at ''σ''. If no errors were found in the measurements or calculations, it would have been necessary to re-examine the world's most precise and best-tested fundamental theory: quantum electrodynamics. The proton radius was a puzzle as of 2017. A resolution came in 2019, when two different studies, using different techniques involving the Lamb shift of the electron in hydrogen, and electron–proton scattering, found the radius of the proton to be 0.833 fm, with an uncertainty of ±0.010 fm, and 0.831 fm. The radius of the proton is linked to the form factor and momentum-transfer cross section. The atomic form factor ''G'' modifies the cross section corresponding to point-like proton. :\begin R_\text^2 &= -6 _ \\ \frac\ &= _\text G^2(q^2) \end The atomic form factor is related to the wave function density of the target: :G(q^2) = \int e^ \psi (r)^2 \, dr^3 The form factor can be split in electric and magnetic form factors. These can be further written as linear combinations of Dirac and Pauli form factors. :\begin G_\text &= F_\text + F_\text \\ G_\text &= F_\text - \tau F_\text \\ \frac &= _ \frac\left(G_\text^2\left(q^2\right) + \fracG_\text^2\left(q^2\right)\right) \end


Pressure inside the proton

Since the proton is composed of quarks confined by gluons, an equivalent pressure which acts on the quarks can be defined. This allows calculation of their distribution as a function of distance from the centre using Compton scattering of high-energy electrons (DVCS, for ''deeply virtual Compton scattering''). The pressure is maximum at the centre, about 1035 Pa, which is greater than the pressure inside a neutron star. It is positive (repulsive) to a radial distance of about 0.6 fm, negative (attractive) at greater distances, and very weak beyond about 2 fm.


Charge radius in solvated proton, hydronium

The radius of the hydrated proton appears in the Born equation for calculating the hydration enthalpy of hydronium.


Interaction of free protons with ordinary matter

Although protons have affinity for oppositely charged electrons, this is a relatively low-energy interaction and so free protons must lose sufficient velocity (and
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
) in order to become closely associated and bound to electrons. High energy protons, in traversing ordinary matter, lose energy by collisions with
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in ...
, and by ionization of atoms (removing electrons) until they are slowed sufficiently to be captured by the electron cloud in a normal atom. However, in such an association with an electron, the character of the bound proton is not changed, and it remains a proton. The attraction of low-energy free protons to any electrons present in normal matter (such as the electrons in normal atoms) causes free protons to stop and to form a new chemical bond with an atom. Such a bond happens at any sufficiently "cold" temperature (that is, comparable to temperatures at the surface of the Sun) and with any type of atom. Thus, in interaction with any type of normal (non-plasma) matter, low-velocity free protons do not remain free but are attracted to electrons in any atom or molecule with which they come into contact, causing the proton and molecule to combine. Such molecules are then said to be " protonated", and chemically they are simply compounds of hydrogen, often positively charged. Often, as a result, they become so-called Brønsted acids. For example, a proton captured by a water molecule in water becomes hydronium, the aqueous
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
.


Proton in chemistry


Atomic number

In
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
, the number of protons in the nucleus of an atom is known as the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
, which determines the chemical element to which the atom belongs. For example, the atomic number of chlorine is 17; this means that each chlorine atom has 17 protons and that all atoms with 17 protons are chlorine atoms. The chemical properties of each atom are determined by the number of (negatively charged)
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s, which for neutral atoms is equal to the number of (positive) protons so that the total charge is zero. For example, a neutral chlorine atom has 17 protons and 17 electrons, whereas a Cl anion has 17 protons and 18 electrons for a total charge of −1. All atoms of a given element are not necessarily identical, however. The number of neutrons may vary to form different isotopes, and energy levels may differ, resulting in different nuclear isomers. For example, there are two stable isotopes of chlorine: with 35 − 17 = 18 neutrons and with 37 − 17 = 20 neutrons.


Hydrogen ion

In chemistry, the term proton refers to the hydrogen ion, . Since the atomic number of hydrogen is 1, a hydrogen ion has no electrons and corresponds to a bare nucleus, consisting of a proton (and 0 neutrons for the most abundant isotope ''protium'' ). The proton is a "bare charge" with only about 1/64,000 of the radius of a hydrogen atom, and so is extremely reactive chemically. The free proton, thus, has an extremely short lifetime in chemical systems such as liquids and it reacts immediately with the electron cloud of any available molecule. In aqueous solution, it forms the hydronium ion, H3O+, which in turn is further solvated by water molecules in clusters such as 5O2sup>+ and 9O4sup>+. The transfer of in an acid–base reaction is usually referred to as "proton transfer". The
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
is referred to as a proton donor and the base as a proton acceptor. Likewise,
biochemical Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology an ...
terms such as proton pump and proton channel refer to the movement of hydrated ions. The ion produced by removing the electron from a deuterium atom is known as a deuteron, not a proton. Likewise, removing an electron from a tritium atom produces a triton.


Proton nuclear magnetic resonance (NMR)

Also in chemistry, the term " proton NMR" refers to the observation of hydrogen-1 nuclei in (mostly
organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ Chemistry * Organic matter, matter that has come from a once-living organism, is capable of decay or is the product ...
) molecules by nuclear magnetic resonance. This method uses the quantized spin magnetic moment of the proton, which is due to its angular momentum (or
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
), which in turn has a magnitude of one-half the reduced Planck constant. (\hbar/2). The name refers to examination of protons as they occur in protium (hydrogen-1 atoms) in compounds, and does not imply that free protons exist in the compound being studied.


Human exposure

The
Apollo Lunar Surface Experiments Package The Apollo Lunar Surface Experiments Package (ALSEP) comprised a set of scientific instruments placed by the astronauts at the landing site of each of the five Apollo missions to land on the Moon following Apollo 11 (Apollos 12, 14, 15, 16, ...
s (ALSEP) determined that more than 95% of the particles in the solar wind are electrons and protons, in approximately equal numbers. Protons also have extrasolar origin from galactic cosmic rays, where they make up about 90% of the total particle flux. These protons often have higher energy than solar wind protons, and their intensity is far more uniform and less variable than protons coming from the Sun, the production of which is heavily affected by solar proton events such as coronal mass ejections. Research has been performed on the dose-rate effects of protons, as typically found in space travel, on human health. To be more specific, there are hopes to identify what specific chromosomes are damaged, and to define the damage, during cancer development from proton exposure. Another study looks into determining "the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including
dopaminergic Dopaminergic means "related to dopamine" (literally, "working on dopamine"), dopamine being a common neurotransmitter. Dopaminergic substances or actions increase dopamine-related activity in the brain. Dopaminergic brain pathways facilitate d ...
functioning,
amphetamine Amphetamine (contracted from alpha- methylphenethylamine) is a strong central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. It is also commonly used ...
-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Electrical charging of a spacecraft due to interplanetary proton bombardment has also been proposed for study. There are many more studies that pertain to space travel, including galactic cosmic rays and their possible health effects, and solar proton event exposure. The American Biostack and Soviet Biorack space travel experiments have demonstrated the severity of molecular damage induced by heavy ions on microorganisms including Artemia cysts.


Antiproton

CPT-symmetry Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T ...
puts strong constraints on the relative properties of particles and antiparticles and, therefore, is open to stringent tests. For example, the charges of a proton and antiproton must sum to exactly zero. This equality has been tested to one part in . The equality of their masses has also been tested to better than one part in . By holding antiprotons in a Penning trap, the equality of the charge-to-mass ratio of protons and antiprotons has been tested to one part in . The magnetic moment of antiprotons has been measured with error of nuclear Bohr magnetons, and is found to be equal and opposite to that of a proton.


See also

* Fermion field * Hydrogen * Hydron (chemistry) *
List of particles This is a list of known and hypothesized particles. Elementary particles Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles. They are the fundamental ob ...
* Proton–proton chain * Quark model *
Proton spin crisis The proton spin crisis (sometimes called the "proton spin puzzle") is a theoretical crisis precipitated by a 1987 experiment by the European Muon Collaboration (EMC), which tried to determine the distribution of spin within the proton. Physicist ...
*
Proton therapy In medicine, proton therapy, or proton radiotherapy, is a type of particle therapy that uses a beam of protons to irradiate diseased tissue, most often to treat cancer. The chief advantage of proton therapy over other types of external beam ra ...


References


External links

*
Particle Data Group
at LBL
Large Hadron Collider
*
Inside the Proton, the ‘Most Complicated Thing You Could Possibly Imagine’
Quanta Magazine ''Quanta Magazine'' is an editorially independent online publication of the Simons Foundation covering developments in physics, mathematics, biology and computer science. ''Undark Magazine'' described ''Quanta Magazine'' as "highly regarded for ...
, Oct 19 2022 {{Authority control Baryons Cations Nucleons Hydrogen physics 1910s in science